Solve for x
x=\frac{\sqrt{12813994352897}-1}{100109330882}\approx 0.000035758
x=\frac{-\sqrt{12813994352897}-1}{100109330882}\approx -0.000035758
Graph
Share
Copied to clipboard
\left(-x+64\right)\times 473^{-4}=x^{2}
Variable x cannot be equal to 64 since division by zero is not defined. Multiply both sides of the equation by -x+64.
\left(-x+64\right)\times \frac{1}{50054665441}=x^{2}
Calculate 473 to the power of -4 and get \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}=x^{2}
Use the distributive property to multiply -x+64 by \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-\frac{1}{50054665441}x+\frac{64}{50054665441}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\left(-\frac{1}{50054665441}\right)^{2}-4\left(-1\right)\times \frac{64}{50054665441}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{1}{50054665441} for b, and \frac{64}{50054665441} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}-4\left(-1\right)\times \frac{64}{50054665441}}}{2\left(-1\right)}
Square -\frac{1}{50054665441} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}+4\times \frac{64}{50054665441}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}+\frac{256}{50054665441}}}{2\left(-1\right)}
Multiply 4 times \frac{64}{50054665441}.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{12813994352897}{2505469532410439724481}}}{2\left(-1\right)}
Add \frac{1}{2505469532410439724481} to \frac{256}{50054665441} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\frac{\sqrt{12813994352897}}{50054665441}}{2\left(-1\right)}
Take the square root of \frac{12813994352897}{2505469532410439724481}.
x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{2\left(-1\right)}
The opposite of -\frac{1}{50054665441} is \frac{1}{50054665441}.
x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{12813994352897}+1}{-2\times 50054665441}
Now solve the equation x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2} when ± is plus. Add \frac{1}{50054665441} to \frac{\sqrt{12813994352897}}{50054665441}.
x=\frac{-\sqrt{12813994352897}-1}{100109330882}
Divide \frac{1+\sqrt{12813994352897}}{50054665441} by -2.
x=\frac{1-\sqrt{12813994352897}}{-2\times 50054665441}
Now solve the equation x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2} when ± is minus. Subtract \frac{\sqrt{12813994352897}}{50054665441} from \frac{1}{50054665441}.
x=\frac{\sqrt{12813994352897}-1}{100109330882}
Divide \frac{1-\sqrt{12813994352897}}{50054665441} by -2.
x=\frac{-\sqrt{12813994352897}-1}{100109330882} x=\frac{\sqrt{12813994352897}-1}{100109330882}
The equation is now solved.
\left(-x+64\right)\times 473^{-4}=x^{2}
Variable x cannot be equal to 64 since division by zero is not defined. Multiply both sides of the equation by -x+64.
\left(-x+64\right)\times \frac{1}{50054665441}=x^{2}
Calculate 473 to the power of -4 and get \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}=x^{2}
Use the distributive property to multiply -x+64 by \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}-x^{2}=0
Subtract x^{2} from both sides.
-\frac{1}{50054665441}x-x^{2}=-\frac{64}{50054665441}
Subtract \frac{64}{50054665441} from both sides. Anything subtracted from zero gives its negation.
-x^{2}-\frac{1}{50054665441}x=-\frac{64}{50054665441}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-\frac{1}{50054665441}x}{-1}=-\frac{\frac{64}{50054665441}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{1}{50054665441}}{-1}\right)x=-\frac{\frac{64}{50054665441}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{1}{50054665441}x=-\frac{\frac{64}{50054665441}}{-1}
Divide -\frac{1}{50054665441} by -1.
x^{2}+\frac{1}{50054665441}x=\frac{64}{50054665441}
Divide -\frac{64}{50054665441} by -1.
x^{2}+\frac{1}{50054665441}x+\left(\frac{1}{100109330882}\right)^{2}=\frac{64}{50054665441}+\left(\frac{1}{100109330882}\right)^{2}
Divide \frac{1}{50054665441}, the coefficient of the x term, by 2 to get \frac{1}{100109330882}. Then add the square of \frac{1}{100109330882} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}=\frac{64}{50054665441}+\frac{1}{10021878129641758897924}
Square \frac{1}{100109330882} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}=\frac{12813994352897}{10021878129641758897924}
Add \frac{64}{50054665441} to \frac{1}{10021878129641758897924} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{100109330882}\right)^{2}=\frac{12813994352897}{10021878129641758897924}
Factor x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{100109330882}\right)^{2}}=\sqrt{\frac{12813994352897}{10021878129641758897924}}
Take the square root of both sides of the equation.
x+\frac{1}{100109330882}=\frac{\sqrt{12813994352897}}{100109330882} x+\frac{1}{100109330882}=-\frac{\sqrt{12813994352897}}{100109330882}
Simplify.
x=\frac{\sqrt{12813994352897}-1}{100109330882} x=\frac{-\sqrt{12813994352897}-1}{100109330882}
Subtract \frac{1}{100109330882} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}