Solve for y
y=-\frac{4^{x}-3\times 2^{x}-4}{3-2^{x}}
x\neq \log_{2}\left(3\right)
Solve for x
\left\{\begin{matrix}\\x=\log_{2}\left(\frac{\sqrt{y^{2}-6y+25}+y+3}{2}\right)\text{, }&\text{unconditionally}\\x=\log_{2}\left(\frac{-\sqrt{y^{2}-6y+25}+y+3}{2}\right)\text{, }&y>\frac{4}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
4^{x}-\left(y\times 2^{x}+3\times 2^{x}\right)+3y-4=0
Use the distributive property to multiply y+3 by 2^{x}.
4^{x}-y\times 2^{x}-3\times 2^{x}+3y-4=0
To find the opposite of y\times 2^{x}+3\times 2^{x}, find the opposite of each term.
-y\times 2^{x}-3\times 2^{x}+3y-4=-4^{x}
Subtract 4^{x} from both sides. Anything subtracted from zero gives its negation.
-y\times 2^{x}+3y-4=-4^{x}+3\times 2^{x}
Add 3\times 2^{x} to both sides.
-y\times 2^{x}+3y=-4^{x}+3\times 2^{x}+4
Add 4 to both sides.
\left(-2^{x}+3\right)y=-4^{x}+3\times 2^{x}+4
Combine all terms containing y.
\left(3-2^{x}\right)y=3\times 2^{x}-4^{x}+4
The equation is in standard form.
\frac{\left(3-2^{x}\right)y}{3-2^{x}}=\frac{3\times 2^{x}-4^{x}+4}{3-2^{x}}
Divide both sides by -2^{x}+3.
y=\frac{3\times 2^{x}-4^{x}+4}{3-2^{x}}
Dividing by -2^{x}+3 undoes the multiplication by -2^{x}+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}