Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+x^{2}=\left(\frac{3}{2}x-4\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+x^{2}=\frac{9}{4}x^{2}-12x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-4\right)^{2}.
16+x^{2}-\frac{9}{4}x^{2}=-12x+16
Subtract \frac{9}{4}x^{2} from both sides.
16-\frac{5}{4}x^{2}=-12x+16
Combine x^{2} and -\frac{9}{4}x^{2} to get -\frac{5}{4}x^{2}.
16-\frac{5}{4}x^{2}+12x=16
Add 12x to both sides.
16-\frac{5}{4}x^{2}+12x-16=0
Subtract 16 from both sides.
-\frac{5}{4}x^{2}+12x=0
Subtract 16 from 16 to get 0.
x\left(-\frac{5}{4}x+12\right)=0
Factor out x.
x=0 x=\frac{48}{5}
To find equation solutions, solve x=0 and -\frac{5x}{4}+12=0.
16+x^{2}=\left(\frac{3}{2}x-4\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+x^{2}=\frac{9}{4}x^{2}-12x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-4\right)^{2}.
16+x^{2}-\frac{9}{4}x^{2}=-12x+16
Subtract \frac{9}{4}x^{2} from both sides.
16-\frac{5}{4}x^{2}=-12x+16
Combine x^{2} and -\frac{9}{4}x^{2} to get -\frac{5}{4}x^{2}.
16-\frac{5}{4}x^{2}+12x=16
Add 12x to both sides.
16-\frac{5}{4}x^{2}+12x-16=0
Subtract 16 from both sides.
-\frac{5}{4}x^{2}+12x=0
Subtract 16 from 16 to get 0.
x=\frac{-12±\sqrt{12^{2}}}{2\left(-\frac{5}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{4} for a, 12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±12}{2\left(-\frac{5}{4}\right)}
Take the square root of 12^{2}.
x=\frac{-12±12}{-\frac{5}{2}}
Multiply 2 times -\frac{5}{4}.
x=\frac{0}{-\frac{5}{2}}
Now solve the equation x=\frac{-12±12}{-\frac{5}{2}} when ± is plus. Add -12 to 12.
x=0
Divide 0 by -\frac{5}{2} by multiplying 0 by the reciprocal of -\frac{5}{2}.
x=-\frac{24}{-\frac{5}{2}}
Now solve the equation x=\frac{-12±12}{-\frac{5}{2}} when ± is minus. Subtract 12 from -12.
x=\frac{48}{5}
Divide -24 by -\frac{5}{2} by multiplying -24 by the reciprocal of -\frac{5}{2}.
x=0 x=\frac{48}{5}
The equation is now solved.
16+x^{2}=\left(\frac{3}{2}x-4\right)^{2}
Calculate 4 to the power of 2 and get 16.
16+x^{2}=\frac{9}{4}x^{2}-12x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{2}x-4\right)^{2}.
16+x^{2}-\frac{9}{4}x^{2}=-12x+16
Subtract \frac{9}{4}x^{2} from both sides.
16-\frac{5}{4}x^{2}=-12x+16
Combine x^{2} and -\frac{9}{4}x^{2} to get -\frac{5}{4}x^{2}.
16-\frac{5}{4}x^{2}+12x=16
Add 12x to both sides.
-\frac{5}{4}x^{2}+12x=16-16
Subtract 16 from both sides.
-\frac{5}{4}x^{2}+12x=0
Subtract 16 from 16 to get 0.
\frac{-\frac{5}{4}x^{2}+12x}{-\frac{5}{4}}=\frac{0}{-\frac{5}{4}}
Divide both sides of the equation by -\frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{12}{-\frac{5}{4}}x=\frac{0}{-\frac{5}{4}}
Dividing by -\frac{5}{4} undoes the multiplication by -\frac{5}{4}.
x^{2}-\frac{48}{5}x=\frac{0}{-\frac{5}{4}}
Divide 12 by -\frac{5}{4} by multiplying 12 by the reciprocal of -\frac{5}{4}.
x^{2}-\frac{48}{5}x=0
Divide 0 by -\frac{5}{4} by multiplying 0 by the reciprocal of -\frac{5}{4}.
x^{2}-\frac{48}{5}x+\left(-\frac{24}{5}\right)^{2}=\left(-\frac{24}{5}\right)^{2}
Divide -\frac{48}{5}, the coefficient of the x term, by 2 to get -\frac{24}{5}. Then add the square of -\frac{24}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{48}{5}x+\frac{576}{25}=\frac{576}{25}
Square -\frac{24}{5} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{24}{5}\right)^{2}=\frac{576}{25}
Factor x^{2}-\frac{48}{5}x+\frac{576}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{5}\right)^{2}}=\sqrt{\frac{576}{25}}
Take the square root of both sides of the equation.
x-\frac{24}{5}=\frac{24}{5} x-\frac{24}{5}=-\frac{24}{5}
Simplify.
x=\frac{48}{5} x=0
Add \frac{24}{5} to both sides of the equation.