Evaluate
\frac{371779}{12500}=29.74232
Factor
\frac{371779}{2 ^ {2} \cdot 5 ^ {5}} = 29\frac{9279}{12500} = 29.74232
Share
Copied to clipboard
16+\left(-4\right)^{2}+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate 4 to the power of 2 and get 16.
16+16+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate -4 to the power of 2 and get 16.
32+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 16 and 16 to get 32.
32+\frac{1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate \frac{1}{5} to the power of 5 and get \frac{1}{3125}.
\frac{100000}{3125}+\frac{1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Convert 32 to fraction \frac{100000}{3125}.
\frac{100000+1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{100000}{3125} and \frac{1}{3125} have the same denominator, add them by adding their numerators.
\frac{100001}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 100000 and 1 to get 100001.
\frac{100001}{3125}-\frac{1}{125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate -\frac{1}{5} to the power of 3 and get -\frac{1}{125}.
\frac{100001}{3125}-\frac{25}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Least common multiple of 3125 and 125 is 3125. Convert \frac{100001}{3125} and \frac{1}{125} to fractions with denominator 3125.
\frac{100001-25}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{100001}{3125} and \frac{25}{3125} have the same denominator, subtract them by subtracting their numerators.
\frac{99976}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Subtract 25 from 100001 to get 99976.
\frac{99976}{3125}+\frac{16}{81}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{8098056}{253125}+\frac{50000}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Least common multiple of 3125 and 81 is 253125. Convert \frac{99976}{3125} and \frac{16}{81} to fractions with denominator 253125.
\frac{8098056+50000}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{8098056}{253125} and \frac{50000}{253125} have the same denominator, add them by adding their numerators.
\frac{8148056}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 8098056 and 50000 to get 8148056.
\frac{8148056}{253125}-\frac{16}{81}-\frac{9}{4}
Calculate -\frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{8148056}{253125}-\frac{50000}{253125}-\frac{9}{4}
Least common multiple of 253125 and 81 is 253125. Convert \frac{8148056}{253125} and \frac{16}{81} to fractions with denominator 253125.
\frac{8148056-50000}{253125}-\frac{9}{4}
Since \frac{8148056}{253125} and \frac{50000}{253125} have the same denominator, subtract them by subtracting their numerators.
\frac{8098056}{253125}-\frac{9}{4}
Subtract 50000 from 8148056 to get 8098056.
\frac{99976}{3125}-\frac{9}{4}
Reduce the fraction \frac{8098056}{253125} to lowest terms by extracting and canceling out 81.
\frac{399904}{12500}-\frac{28125}{12500}
Least common multiple of 3125 and 4 is 12500. Convert \frac{99976}{3125} and \frac{9}{4} to fractions with denominator 12500.
\frac{399904-28125}{12500}
Since \frac{399904}{12500} and \frac{28125}{12500} have the same denominator, subtract them by subtracting their numerators.
\frac{371779}{12500}
Subtract 28125 from 399904 to get 371779.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}