Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

16+\left(-4\right)^{2}+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate 4 to the power of 2 and get 16.
16+16+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate -4 to the power of 2 and get 16.
32+\left(\frac{1}{5}\right)^{5}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 16 and 16 to get 32.
32+\frac{1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate \frac{1}{5} to the power of 5 and get \frac{1}{3125}.
\frac{100000}{3125}+\frac{1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Convert 32 to fraction \frac{100000}{3125}.
\frac{100000+1}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{100000}{3125} and \frac{1}{3125} have the same denominator, add them by adding their numerators.
\frac{100001}{3125}+\left(-\frac{1}{5}\right)^{3}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 100000 and 1 to get 100001.
\frac{100001}{3125}-\frac{1}{125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate -\frac{1}{5} to the power of 3 and get -\frac{1}{125}.
\frac{100001}{3125}-\frac{25}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Least common multiple of 3125 and 125 is 3125. Convert \frac{100001}{3125} and \frac{1}{125} to fractions with denominator 3125.
\frac{100001-25}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{100001}{3125} and \frac{25}{3125} have the same denominator, subtract them by subtracting their numerators.
\frac{99976}{3125}+\left(\frac{2}{3}\right)^{4}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Subtract 25 from 100001 to get 99976.
\frac{99976}{3125}+\frac{16}{81}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Calculate \frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{8098056}{253125}+\frac{50000}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Least common multiple of 3125 and 81 is 253125. Convert \frac{99976}{3125} and \frac{16}{81} to fractions with denominator 253125.
\frac{8098056+50000}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Since \frac{8098056}{253125} and \frac{50000}{253125} have the same denominator, add them by adding their numerators.
\frac{8148056}{253125}-\left(-\frac{2}{3}\right)^{4}-\frac{9}{4}
Add 8098056 and 50000 to get 8148056.
\frac{8148056}{253125}-\frac{16}{81}-\frac{9}{4}
Calculate -\frac{2}{3} to the power of 4 and get \frac{16}{81}.
\frac{8148056}{253125}-\frac{50000}{253125}-\frac{9}{4}
Least common multiple of 253125 and 81 is 253125. Convert \frac{8148056}{253125} and \frac{16}{81} to fractions with denominator 253125.
\frac{8148056-50000}{253125}-\frac{9}{4}
Since \frac{8148056}{253125} and \frac{50000}{253125} have the same denominator, subtract them by subtracting their numerators.
\frac{8098056}{253125}-\frac{9}{4}
Subtract 50000 from 8148056 to get 8098056.
\frac{99976}{3125}-\frac{9}{4}
Reduce the fraction \frac{8098056}{253125} to lowest terms by extracting and canceling out 81.
\frac{399904}{12500}-\frac{28125}{12500}
Least common multiple of 3125 and 4 is 12500. Convert \frac{99976}{3125} and \frac{9}{4} to fractions with denominator 12500.
\frac{399904-28125}{12500}
Since \frac{399904}{12500} and \frac{28125}{12500} have the same denominator, subtract them by subtracting their numerators.
\frac{371779}{12500}
Subtract 28125 from 399904 to get 371779.