Verify
true
Share
Copied to clipboard
4^{11}\times 4^{-12}=4^{2+9-12}\text{ and }4^{2+9-12}=4^{-1}
To multiply powers of the same base, add their exponents. Add 2 and 9 to get 11.
4^{-1}=4^{2+9-12}\text{ and }4^{2+9-12}=4^{-1}
To multiply powers of the same base, add their exponents. Add 11 and -12 to get -1.
\frac{1}{4}=4^{2+9-12}\text{ and }4^{2+9-12}=4^{-1}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{1}{4}=4^{11-12}\text{ and }4^{2+9-12}=4^{-1}
Add 2 and 9 to get 11.
\frac{1}{4}=4^{-1}\text{ and }4^{2+9-12}=4^{-1}
Subtract 12 from 11 to get -1.
\frac{1}{4}=\frac{1}{4}\text{ and }4^{2+9-12}=4^{-1}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\text{true}\text{ and }4^{2+9-12}=4^{-1}
Compare \frac{1}{4} and \frac{1}{4}.
\text{true}\text{ and }4^{11-12}=4^{-1}
Add 2 and 9 to get 11.
\text{true}\text{ and }4^{-1}=4^{-1}
Subtract 12 from 11 to get -1.
\text{true}\text{ and }\frac{1}{4}=4^{-1}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\text{true}\text{ and }\frac{1}{4}=\frac{1}{4}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\text{true}\text{ and }\text{true}
Compare \frac{1}{4} and \frac{1}{4}.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}