Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

78400=\left(81x\right)^{2}+x^{2}
Calculate 280 to the power of 2 and get 78400.
78400=81^{2}x^{2}+x^{2}
Expand \left(81x\right)^{2}.
78400=6561x^{2}+x^{2}
Calculate 81 to the power of 2 and get 6561.
78400=6562x^{2}
Combine 6561x^{2} and x^{2} to get 6562x^{2}.
6562x^{2}=78400
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{78400}{6562}
Divide both sides by 6562.
x^{2}=\frac{39200}{3281}
Reduce the fraction \frac{78400}{6562} to lowest terms by extracting and canceling out 2.
x=\frac{140\sqrt{6562}}{3281} x=-\frac{140\sqrt{6562}}{3281}
Take the square root of both sides of the equation.
78400=\left(81x\right)^{2}+x^{2}
Calculate 280 to the power of 2 and get 78400.
78400=81^{2}x^{2}+x^{2}
Expand \left(81x\right)^{2}.
78400=6561x^{2}+x^{2}
Calculate 81 to the power of 2 and get 6561.
78400=6562x^{2}
Combine 6561x^{2} and x^{2} to get 6562x^{2}.
6562x^{2}=78400
Swap sides so that all variable terms are on the left hand side.
6562x^{2}-78400=0
Subtract 78400 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 6562\left(-78400\right)}}{2\times 6562}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6562 for a, 0 for b, and -78400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6562\left(-78400\right)}}{2\times 6562}
Square 0.
x=\frac{0±\sqrt{-26248\left(-78400\right)}}{2\times 6562}
Multiply -4 times 6562.
x=\frac{0±\sqrt{2057843200}}{2\times 6562}
Multiply -26248 times -78400.
x=\frac{0±560\sqrt{6562}}{2\times 6562}
Take the square root of 2057843200.
x=\frac{0±560\sqrt{6562}}{13124}
Multiply 2 times 6562.
x=\frac{140\sqrt{6562}}{3281}
Now solve the equation x=\frac{0±560\sqrt{6562}}{13124} when ± is plus.
x=-\frac{140\sqrt{6562}}{3281}
Now solve the equation x=\frac{0±560\sqrt{6562}}{13124} when ± is minus.
x=\frac{140\sqrt{6562}}{3281} x=-\frac{140\sqrt{6562}}{3281}
The equation is now solved.