Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

40000-4\left(5+x^{2}\right)\times 124=0
Calculate 200 to the power of 2 and get 40000.
40000-496\left(5+x^{2}\right)=0
Multiply 4 and 124 to get 496.
40000-2480-496x^{2}=0
Use the distributive property to multiply -496 by 5+x^{2}.
37520-496x^{2}=0
Subtract 2480 from 40000 to get 37520.
-496x^{2}=-37520
Subtract 37520 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-37520}{-496}
Divide both sides by -496.
x^{2}=\frac{2345}{31}
Reduce the fraction \frac{-37520}{-496} to lowest terms by extracting and canceling out -16.
x=\frac{\sqrt{72695}}{31} x=-\frac{\sqrt{72695}}{31}
Take the square root of both sides of the equation.
40000-4\left(5+x^{2}\right)\times 124=0
Calculate 200 to the power of 2 and get 40000.
40000-496\left(5+x^{2}\right)=0
Multiply 4 and 124 to get 496.
40000-2480-496x^{2}=0
Use the distributive property to multiply -496 by 5+x^{2}.
37520-496x^{2}=0
Subtract 2480 from 40000 to get 37520.
-496x^{2}+37520=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-496\right)\times 37520}}{2\left(-496\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -496 for a, 0 for b, and 37520 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-496\right)\times 37520}}{2\left(-496\right)}
Square 0.
x=\frac{0±\sqrt{1984\times 37520}}{2\left(-496\right)}
Multiply -4 times -496.
x=\frac{0±\sqrt{74439680}}{2\left(-496\right)}
Multiply 1984 times 37520.
x=\frac{0±32\sqrt{72695}}{2\left(-496\right)}
Take the square root of 74439680.
x=\frac{0±32\sqrt{72695}}{-992}
Multiply 2 times -496.
x=-\frac{\sqrt{72695}}{31}
Now solve the equation x=\frac{0±32\sqrt{72695}}{-992} when ± is plus.
x=\frac{\sqrt{72695}}{31}
Now solve the equation x=\frac{0±32\sqrt{72695}}{-992} when ± is minus.
x=-\frac{\sqrt{72695}}{31} x=\frac{\sqrt{72695}}{31}
The equation is now solved.