Solve for x
x = \frac{\sqrt{72695}}{31} \approx 8.697422681
x = -\frac{\sqrt{72695}}{31} \approx -8.697422681
Graph
Share
Copied to clipboard
40000-4\left(5+x^{2}\right)\times 124=0
Calculate 200 to the power of 2 and get 40000.
40000-496\left(5+x^{2}\right)=0
Multiply 4 and 124 to get 496.
40000-2480-496x^{2}=0
Use the distributive property to multiply -496 by 5+x^{2}.
37520-496x^{2}=0
Subtract 2480 from 40000 to get 37520.
-496x^{2}=-37520
Subtract 37520 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-37520}{-496}
Divide both sides by -496.
x^{2}=\frac{2345}{31}
Reduce the fraction \frac{-37520}{-496} to lowest terms by extracting and canceling out -16.
x=\frac{\sqrt{72695}}{31} x=-\frac{\sqrt{72695}}{31}
Take the square root of both sides of the equation.
40000-4\left(5+x^{2}\right)\times 124=0
Calculate 200 to the power of 2 and get 40000.
40000-496\left(5+x^{2}\right)=0
Multiply 4 and 124 to get 496.
40000-2480-496x^{2}=0
Use the distributive property to multiply -496 by 5+x^{2}.
37520-496x^{2}=0
Subtract 2480 from 40000 to get 37520.
-496x^{2}+37520=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-496\right)\times 37520}}{2\left(-496\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -496 for a, 0 for b, and 37520 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-496\right)\times 37520}}{2\left(-496\right)}
Square 0.
x=\frac{0±\sqrt{1984\times 37520}}{2\left(-496\right)}
Multiply -4 times -496.
x=\frac{0±\sqrt{74439680}}{2\left(-496\right)}
Multiply 1984 times 37520.
x=\frac{0±32\sqrt{72695}}{2\left(-496\right)}
Take the square root of 74439680.
x=\frac{0±32\sqrt{72695}}{-992}
Multiply 2 times -496.
x=-\frac{\sqrt{72695}}{31}
Now solve the equation x=\frac{0±32\sqrt{72695}}{-992} when ± is plus.
x=\frac{\sqrt{72695}}{31}
Now solve the equation x=\frac{0±32\sqrt{72695}}{-992} when ± is minus.
x=-\frac{\sqrt{72695}}{31} x=\frac{\sqrt{72695}}{31}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}