Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6.76=1^{2}+x^{2}
Calculate 2.6 to the power of 2 and get 6.76.
6.76=1+x^{2}
Calculate 1 to the power of 2 and get 1.
1+x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
1+x^{2}-6.76=0
Subtract 6.76 from both sides.
-5.76+x^{2}=0
Subtract 6.76 from 1 to get -5.76.
\left(x-\frac{12}{5}\right)\left(x+\frac{12}{5}\right)=0
Consider -5.76+x^{2}. Rewrite -5.76+x^{2} as x^{2}-\left(\frac{12}{5}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{12}{5} x=-\frac{12}{5}
To find equation solutions, solve x-\frac{12}{5}=0 and x+\frac{12}{5}=0.
6.76=1^{2}+x^{2}
Calculate 2.6 to the power of 2 and get 6.76.
6.76=1+x^{2}
Calculate 1 to the power of 2 and get 1.
1+x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
x^{2}=6.76-1
Subtract 1 from both sides.
x^{2}=5.76
Subtract 1 from 6.76 to get 5.76.
x=\frac{12}{5} x=-\frac{12}{5}
Take the square root of both sides of the equation.
6.76=1^{2}+x^{2}
Calculate 2.6 to the power of 2 and get 6.76.
6.76=1+x^{2}
Calculate 1 to the power of 2 and get 1.
1+x^{2}=6.76
Swap sides so that all variable terms are on the left hand side.
1+x^{2}-6.76=0
Subtract 6.76 from both sides.
-5.76+x^{2}=0
Subtract 6.76 from 1 to get -5.76.
x^{2}-5.76=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-5.76\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -5.76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5.76\right)}}{2}
Square 0.
x=\frac{0±\sqrt{23.04}}{2}
Multiply -4 times -5.76.
x=\frac{0±\frac{24}{5}}{2}
Take the square root of 23.04.
x=\frac{12}{5}
Now solve the equation x=\frac{0±\frac{24}{5}}{2} when ± is plus.
x=-\frac{12}{5}
Now solve the equation x=\frac{0±\frac{24}{5}}{2} when ± is minus.
x=\frac{12}{5} x=-\frac{12}{5}
The equation is now solved.