Solve for x
x=8
Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(2)}+8
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
64\times \frac{32^{6}\times 16^{3}}{256^{4}}=4^{x}
Calculate 2 to the power of 6 and get 64.
64\times \frac{1073741824\times 16^{3}}{256^{4}}=4^{x}
Calculate 32 to the power of 6 and get 1073741824.
64\times \frac{1073741824\times 4096}{256^{4}}=4^{x}
Calculate 16 to the power of 3 and get 4096.
64\times \frac{4398046511104}{256^{4}}=4^{x}
Multiply 1073741824 and 4096 to get 4398046511104.
64\times \frac{4398046511104}{4294967296}=4^{x}
Calculate 256 to the power of 4 and get 4294967296.
64\times 1024=4^{x}
Divide 4398046511104 by 4294967296 to get 1024.
65536=4^{x}
Multiply 64 and 1024 to get 65536.
4^{x}=65536
Swap sides so that all variable terms are on the left hand side.
\log(4^{x})=\log(65536)
Take the logarithm of both sides of the equation.
x\log(4)=\log(65536)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(65536)}{\log(4)}
Divide both sides by \log(4).
x=\log_{4}\left(65536\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}