Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

8+\left(\frac{1}{3}\right)^{3}+|3-4|+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
Calculate 2 to the power of 3 and get 8.
8+\frac{1}{27}+|3-4|+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\frac{217}{27}+|3-4|+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
Add 8 and \frac{1}{27} to get \frac{217}{27}.
\frac{217}{27}+|-1|+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
Subtract 4 from 3 to get -1.
\frac{217}{27}+1+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -1 is 1.
\frac{244}{27}+\left(\frac{1}{\sqrt{1001}+1002}\right)^{0}
Add \frac{217}{27} and 1 to get \frac{244}{27}.
\frac{244}{27}+\left(\frac{\sqrt{1001}-1002}{\left(\sqrt{1001}+1002\right)\left(\sqrt{1001}-1002\right)}\right)^{0}
Rationalize the denominator of \frac{1}{\sqrt{1001}+1002} by multiplying numerator and denominator by \sqrt{1001}-1002.
\frac{244}{27}+\left(\frac{\sqrt{1001}-1002}{\left(\sqrt{1001}\right)^{2}-1002^{2}}\right)^{0}
Consider \left(\sqrt{1001}+1002\right)\left(\sqrt{1001}-1002\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{244}{27}+\left(\frac{\sqrt{1001}-1002}{1001-1004004}\right)^{0}
Square \sqrt{1001}. Square 1002.
\frac{244}{27}+\left(\frac{\sqrt{1001}-1002}{-1003003}\right)^{0}
Subtract 1004004 from 1001 to get -1003003.
\frac{244}{27}+\left(\frac{-\sqrt{1001}+1002}{1003003}\right)^{0}
Multiply both numerator and denominator by -1.
\frac{244}{27}+\frac{\left(-\sqrt{1001}+1002\right)^{0}}{1003003^{0}}
To raise \frac{-\sqrt{1001}+1002}{1003003} to a power, raise both numerator and denominator to the power and then divide.
\frac{244}{27}+\frac{27\left(-\sqrt{1001}+1002\right)^{0}}{27}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 27 and 1003003^{0} is 27. Multiply \frac{\left(-\sqrt{1001}+1002\right)^{0}}{1003003^{0}} times \frac{27}{27}.
\frac{244+27\left(-\sqrt{1001}+1002\right)^{0}}{27}
Since \frac{244}{27} and \frac{27\left(-\sqrt{1001}+1002\right)^{0}}{27} have the same denominator, add them by adding their numerators.
\frac{244}{27}+\frac{1}{1003003^{0}}
Calculate -\sqrt{1001}+1002 to the power of 0 and get 1.
\frac{244}{27}+\frac{1}{1}
Calculate 1003003 to the power of 0 and get 1.
\frac{244}{27}+1
Anything divided by one gives itself.
\frac{271}{27}
Add \frac{244}{27} and 1 to get \frac{271}{27}.