Solve for y
y=-\sqrt{323}i\approx -0-17.972200756i
y=\sqrt{323}i\approx 17.972200756i
Share
Copied to clipboard
324+y^{2}=1
Calculate 18 to the power of 2 and get 324.
y^{2}=1-324
Subtract 324 from both sides.
y^{2}=-323
Subtract 324 from 1 to get -323.
y=\sqrt{323}i y=-\sqrt{323}i
The equation is now solved.
324+y^{2}=1
Calculate 18 to the power of 2 and get 324.
324+y^{2}-1=0
Subtract 1 from both sides.
323+y^{2}=0
Subtract 1 from 324 to get 323.
y^{2}+323=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 323}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 323 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 323}}{2}
Square 0.
y=\frac{0±\sqrt{-1292}}{2}
Multiply -4 times 323.
y=\frac{0±2\sqrt{323}i}{2}
Take the square root of -1292.
y=\sqrt{323}i
Now solve the equation y=\frac{0±2\sqrt{323}i}{2} when ± is plus.
y=-\sqrt{323}i
Now solve the equation y=\frac{0±2\sqrt{323}i}{2} when ± is minus.
y=\sqrt{323}i y=-\sqrt{323}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}