{ 17 }^{ 2 } +( { \left( \frac{ 17 \sqrt{ 3 } }{ 3 } \right) }^{ 2 }
Evaluate
\frac{1156}{3}\approx 385.333333333
Factor
\frac{2 ^ {2} \cdot 17 ^ {2}}{3} = 385\frac{1}{3} = 385.3333333333333
Share
Copied to clipboard
289+\left(\frac{17\sqrt{3}}{3}\right)^{2}
Calculate 17 to the power of 2 and get 289.
289+\frac{\left(17\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{17\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{289\times 3^{2}}{3^{2}}+\frac{\left(17\sqrt{3}\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 289 times \frac{3^{2}}{3^{2}}.
\frac{289\times 3^{2}+\left(17\sqrt{3}\right)^{2}}{3^{2}}
Since \frac{289\times 3^{2}}{3^{2}} and \frac{\left(17\sqrt{3}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
289+\frac{17^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}
Expand \left(17\sqrt{3}\right)^{2}.
289+\frac{289\left(\sqrt{3}\right)^{2}}{3^{2}}
Calculate 17 to the power of 2 and get 289.
289+\frac{289\times 3}{3^{2}}
The square of \sqrt{3} is 3.
289+\frac{867}{3^{2}}
Multiply 289 and 3 to get 867.
289+\frac{867}{9}
Calculate 3 to the power of 2 and get 9.
289+\frac{289}{3}
Reduce the fraction \frac{867}{9} to lowest terms by extracting and canceling out 3.
\frac{1156}{3}
Add 289 and \frac{289}{3} to get \frac{1156}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}