Solve for x
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
100-x^{2}=8^{2}-\left(12-x\right)^{2}
Calculate 10 to the power of 2 and get 100.
100-x^{2}=64-\left(12-x\right)^{2}
Calculate 8 to the power of 2 and get 64.
100-x^{2}=64-\left(144-24x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
100-x^{2}=64-144+24x-x^{2}
To find the opposite of 144-24x+x^{2}, find the opposite of each term.
100-x^{2}=-80+24x-x^{2}
Subtract 144 from 64 to get -80.
100-x^{2}-24x=-80-x^{2}
Subtract 24x from both sides.
100-x^{2}-24x+x^{2}=-80
Add x^{2} to both sides.
100-24x=-80
Combine -x^{2} and x^{2} to get 0.
-24x=-80-100
Subtract 100 from both sides.
-24x=-180
Subtract 100 from -80 to get -180.
x=\frac{-180}{-24}
Divide both sides by -24.
x=\frac{15}{2}
Reduce the fraction \frac{-180}{-24} to lowest terms by extracting and canceling out -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}