Solve for x
x = \frac{50}{13} = 3\frac{11}{13} \approx 3.846153846
Graph
Share
Copied to clipboard
100-x^{2}=13^{2}-\left(13-x\right)^{2}
Calculate 10 to the power of 2 and get 100.
100-x^{2}=169-\left(13-x\right)^{2}
Calculate 13 to the power of 2 and get 169.
100-x^{2}=169-\left(169-26x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
100-x^{2}=169-169+26x-x^{2}
To find the opposite of 169-26x+x^{2}, find the opposite of each term.
100-x^{2}=26x-x^{2}
Subtract 169 from 169 to get 0.
100-x^{2}-26x=-x^{2}
Subtract 26x from both sides.
100-x^{2}-26x+x^{2}=0
Add x^{2} to both sides.
100-26x=0
Combine -x^{2} and x^{2} to get 0.
-26x=-100
Subtract 100 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-100}{-26}
Divide both sides by -26.
x=\frac{50}{13}
Reduce the fraction \frac{-100}{-26} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}