Solve for x (complex solution)
x=5+6\sqrt{2}i\approx 5+8.485281374i
x=-6\sqrt{2}i+5\approx 5-8.485281374i
Graph
Share
Copied to clipboard
100+x^{2}=10x+3
Calculate 10 to the power of 2 and get 100.
100+x^{2}-10x=3
Subtract 10x from both sides.
100+x^{2}-10x-3=0
Subtract 3 from both sides.
97+x^{2}-10x=0
Subtract 3 from 100 to get 97.
x^{2}-10x+97=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 97}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 97 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 97}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-388}}{2}
Multiply -4 times 97.
x=\frac{-\left(-10\right)±\sqrt{-288}}{2}
Add 100 to -388.
x=\frac{-\left(-10\right)±12\sqrt{2}i}{2}
Take the square root of -288.
x=\frac{10±12\sqrt{2}i}{2}
The opposite of -10 is 10.
x=\frac{10+12\sqrt{2}i}{2}
Now solve the equation x=\frac{10±12\sqrt{2}i}{2} when ± is plus. Add 10 to 12i\sqrt{2}.
x=5+6\sqrt{2}i
Divide 10+12i\sqrt{2} by 2.
x=\frac{-12\sqrt{2}i+10}{2}
Now solve the equation x=\frac{10±12\sqrt{2}i}{2} when ± is minus. Subtract 12i\sqrt{2} from 10.
x=-6\sqrt{2}i+5
Divide 10-12i\sqrt{2} by 2.
x=5+6\sqrt{2}i x=-6\sqrt{2}i+5
The equation is now solved.
100+x^{2}=10x+3
Calculate 10 to the power of 2 and get 100.
100+x^{2}-10x=3
Subtract 10x from both sides.
x^{2}-10x=3-100
Subtract 100 from both sides.
x^{2}-10x=-97
Subtract 100 from 3 to get -97.
x^{2}-10x+\left(-5\right)^{2}=-97+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-97+25
Square -5.
x^{2}-10x+25=-72
Add -97 to 25.
\left(x-5\right)^{2}=-72
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-72}
Take the square root of both sides of the equation.
x-5=6\sqrt{2}i x-5=-6\sqrt{2}i
Simplify.
x=5+6\sqrt{2}i x=-6\sqrt{2}i+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}