Solve for x
x=10
Graph
Share
Copied to clipboard
100+\left(x-2.5\right)^{2}=\left(x+2.5\right)^{2}
Calculate 10 to the power of 2 and get 100.
100+x^{2}-5x+6.25=\left(x+2.5\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2.5\right)^{2}.
106.25+x^{2}-5x=\left(x+2.5\right)^{2}
Add 100 and 6.25 to get 106.25.
106.25+x^{2}-5x=x^{2}+5x+6.25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2.5\right)^{2}.
106.25+x^{2}-5x-x^{2}=5x+6.25
Subtract x^{2} from both sides.
106.25-5x=5x+6.25
Combine x^{2} and -x^{2} to get 0.
106.25-5x-5x=6.25
Subtract 5x from both sides.
106.25-10x=6.25
Combine -5x and -5x to get -10x.
-10x=6.25-106.25
Subtract 106.25 from both sides.
-10x=-100
Subtract 106.25 from 6.25 to get -100.
x=\frac{-100}{-10}
Divide both sides by -10.
x=10
Divide -100 by -10 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}