Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

\frac{\frac{1}{1000000}\times 3^{-7}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\frac{1}{1000000}\times \frac{1}{2187}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Calculate 3 to the power of -7 and get \frac{1}{2187}.
\frac{\frac{1}{2187000000}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Multiply \frac{1}{1000000} and \frac{1}{2187} to get \frac{1}{2187000000}.
\frac{\frac{1}{3499200}x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Multiply \frac{1}{2187000000} and 625 to get \frac{1}{3499200}.
\frac{\frac{1}{3499200}x^{-4}}{\frac{1}{125}}\times 6^{-5}x^{-8}
Calculate 5 to the power of -3 and get \frac{1}{125}.
\frac{1}{3499200}x^{-4}\times 125\times 6^{-5}x^{-8}
Divide \frac{1}{3499200}x^{-4} by \frac{1}{125} by multiplying \frac{1}{3499200}x^{-4} by the reciprocal of \frac{1}{125}.
\frac{5}{139968}x^{-4}\times 6^{-5}x^{-8}
Multiply \frac{1}{3499200} and 125 to get \frac{5}{139968}.
\frac{5}{139968}x^{-4}\times \frac{1}{7776}x^{-8}
Calculate 6 to the power of -5 and get \frac{1}{7776}.
\frac{5}{1088391168}x^{-4}x^{-8}
Multiply \frac{5}{139968} and \frac{1}{7776} to get \frac{5}{1088391168}.
\frac{5}{1088391168}x^{-12}
To multiply powers of the same base, add their exponents. Add -4 and -8 to get -12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{1000000}\times 3^{-7}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{1000000}\times \frac{1}{2187}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Calculate 3 to the power of -7 and get \frac{1}{2187}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2187000000}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Multiply \frac{1}{1000000} and \frac{1}{2187} to get \frac{1}{2187000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3499200}x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Multiply \frac{1}{2187000000} and 625 to get \frac{1}{3499200}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3499200}x^{-4}}{\frac{1}{125}}\times 6^{-5}x^{-8})
Calculate 5 to the power of -3 and get \frac{1}{125}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3499200}x^{-4}\times 125\times 6^{-5}x^{-8})
Divide \frac{1}{3499200}x^{-4} by \frac{1}{125} by multiplying \frac{1}{3499200}x^{-4} by the reciprocal of \frac{1}{125}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{139968}x^{-4}\times 6^{-5}x^{-8})
Multiply \frac{1}{3499200} and 125 to get \frac{5}{139968}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{139968}x^{-4}\times \frac{1}{7776}x^{-8})
Calculate 6 to the power of -5 and get \frac{1}{7776}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{1088391168}x^{-4}x^{-8})
Multiply \frac{5}{139968} and \frac{1}{7776} to get \frac{5}{1088391168}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{1088391168}x^{-12})
To multiply powers of the same base, add their exponents. Add -4 and -8 to get -12.
-12\times \frac{5}{1088391168}x^{-12-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{5}{90699264}x^{-12-1}
Multiply -12 times \frac{5}{1088391168}.
-\frac{5}{90699264}x^{-13}
Subtract 1 from -12.