Solve for z (complex solution)
\left\{\begin{matrix}\\z=2m\text{, }&\text{unconditionally}\\z\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Solve for z
\left\{\begin{matrix}\\z=2m\text{, }&\text{unconditionally}\\z\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
m=0
m=\frac{z}{2}
Share
Copied to clipboard
z^{3}+3z^{2}m+3zm^{2}+m^{3}+\left(z-m\right)^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(z+m\right)^{3}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+z^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(z-m\right)^{3}.
2z^{3}+3z^{2}m+3zm^{2}+m^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine z^{3} and z^{3} to get 2z^{3}.
2z^{3}+3zm^{2}+m^{3}+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3z^{2}m and -3z^{2}m to get 0.
2z^{3}+6zm^{2}+m^{3}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3zm^{2} and 3zm^{2} to get 6zm^{2}.
2z^{3}+6zm^{2}=2\left(z^{3}+6m^{3}\right)
Combine m^{3} and -m^{3} to get 0.
2z^{3}+6zm^{2}=2z^{3}+12m^{3}
Use the distributive property to multiply 2 by z^{3}+6m^{3}.
2z^{3}+6zm^{2}-2z^{3}=12m^{3}
Subtract 2z^{3} from both sides.
6zm^{2}=12m^{3}
Combine 2z^{3} and -2z^{3} to get 0.
6m^{2}z=12m^{3}
The equation is in standard form.
\frac{6m^{2}z}{6m^{2}}=\frac{12m^{3}}{6m^{2}}
Divide both sides by 6m^{2}.
z=\frac{12m^{3}}{6m^{2}}
Dividing by 6m^{2} undoes the multiplication by 6m^{2}.
z=2m
Divide 12m^{3} by 6m^{2}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+\left(z-m\right)^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(z+m\right)^{3}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+z^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(z-m\right)^{3}.
2z^{3}+3z^{2}m+3zm^{2}+m^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine z^{3} and z^{3} to get 2z^{3}.
2z^{3}+3zm^{2}+m^{3}+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3z^{2}m and -3z^{2}m to get 0.
2z^{3}+6zm^{2}+m^{3}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3zm^{2} and 3zm^{2} to get 6zm^{2}.
2z^{3}+6zm^{2}=2\left(z^{3}+6m^{3}\right)
Combine m^{3} and -m^{3} to get 0.
2z^{3}+6zm^{2}=2z^{3}+12m^{3}
Use the distributive property to multiply 2 by z^{3}+6m^{3}.
2z^{3}+6zm^{2}-2z^{3}=12m^{3}
Subtract 2z^{3} from both sides.
6zm^{2}=12m^{3}
Combine 2z^{3} and -2z^{3} to get 0.
6m^{2}z=12m^{3}
The equation is in standard form.
\frac{6m^{2}z}{6m^{2}}=\frac{12m^{3}}{6m^{2}}
Divide both sides by 6m^{2}.
z=\frac{12m^{3}}{6m^{2}}
Dividing by 6m^{2} undoes the multiplication by 6m^{2}.
z=2m
Divide 12m^{3} by 6m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}