Skip to main content
Solve for z (complex solution)
Tick mark Image
Solve for z
Tick mark Image
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

z^{3}+3z^{2}m+3zm^{2}+m^{3}+\left(z-m\right)^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(z+m\right)^{3}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+z^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(z-m\right)^{3}.
2z^{3}+3z^{2}m+3zm^{2}+m^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine z^{3} and z^{3} to get 2z^{3}.
2z^{3}+3zm^{2}+m^{3}+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3z^{2}m and -3z^{2}m to get 0.
2z^{3}+6zm^{2}+m^{3}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3zm^{2} and 3zm^{2} to get 6zm^{2}.
2z^{3}+6zm^{2}=2\left(z^{3}+6m^{3}\right)
Combine m^{3} and -m^{3} to get 0.
2z^{3}+6zm^{2}=2z^{3}+12m^{3}
Use the distributive property to multiply 2 by z^{3}+6m^{3}.
2z^{3}+6zm^{2}-2z^{3}=12m^{3}
Subtract 2z^{3} from both sides.
6zm^{2}=12m^{3}
Combine 2z^{3} and -2z^{3} to get 0.
6m^{2}z=12m^{3}
The equation is in standard form.
\frac{6m^{2}z}{6m^{2}}=\frac{12m^{3}}{6m^{2}}
Divide both sides by 6m^{2}.
z=\frac{12m^{3}}{6m^{2}}
Dividing by 6m^{2} undoes the multiplication by 6m^{2}.
z=2m
Divide 12m^{3} by 6m^{2}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+\left(z-m\right)^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(z+m\right)^{3}.
z^{3}+3z^{2}m+3zm^{2}+m^{3}+z^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(z-m\right)^{3}.
2z^{3}+3z^{2}m+3zm^{2}+m^{3}-3z^{2}m+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine z^{3} and z^{3} to get 2z^{3}.
2z^{3}+3zm^{2}+m^{3}+3zm^{2}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3z^{2}m and -3z^{2}m to get 0.
2z^{3}+6zm^{2}+m^{3}-m^{3}=2\left(z^{3}+6m^{3}\right)
Combine 3zm^{2} and 3zm^{2} to get 6zm^{2}.
2z^{3}+6zm^{2}=2\left(z^{3}+6m^{3}\right)
Combine m^{3} and -m^{3} to get 0.
2z^{3}+6zm^{2}=2z^{3}+12m^{3}
Use the distributive property to multiply 2 by z^{3}+6m^{3}.
2z^{3}+6zm^{2}-2z^{3}=12m^{3}
Subtract 2z^{3} from both sides.
6zm^{2}=12m^{3}
Combine 2z^{3} and -2z^{3} to get 0.
6m^{2}z=12m^{3}
The equation is in standard form.
\frac{6m^{2}z}{6m^{2}}=\frac{12m^{3}}{6m^{2}}
Divide both sides by 6m^{2}.
z=\frac{12m^{3}}{6m^{2}}
Dividing by 6m^{2} undoes the multiplication by 6m^{2}.
z=2m
Divide 12m^{3} by 6m^{2}.