Solve for y
y = \frac{\sqrt{129} + 11}{2} \approx 11.178908346
y=\frac{11-\sqrt{129}}{2}\approx -0.178908346
Graph
Share
Copied to clipboard
y^{2}-6y+9-5\left(y+3\right)+4=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-3\right)^{2}.
y^{2}-6y+9-5y-15+4=0
Use the distributive property to multiply -5 by y+3.
y^{2}-11y+9-15+4=0
Combine -6y and -5y to get -11y.
y^{2}-11y-6+4=0
Subtract 15 from 9 to get -6.
y^{2}-11y-2=0
Add -6 and 4 to get -2.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-11\right)±\sqrt{121-4\left(-2\right)}}{2}
Square -11.
y=\frac{-\left(-11\right)±\sqrt{121+8}}{2}
Multiply -4 times -2.
y=\frac{-\left(-11\right)±\sqrt{129}}{2}
Add 121 to 8.
y=\frac{11±\sqrt{129}}{2}
The opposite of -11 is 11.
y=\frac{\sqrt{129}+11}{2}
Now solve the equation y=\frac{11±\sqrt{129}}{2} when ± is plus. Add 11 to \sqrt{129}.
y=\frac{11-\sqrt{129}}{2}
Now solve the equation y=\frac{11±\sqrt{129}}{2} when ± is minus. Subtract \sqrt{129} from 11.
y=\frac{\sqrt{129}+11}{2} y=\frac{11-\sqrt{129}}{2}
The equation is now solved.
y^{2}-6y+9-5\left(y+3\right)+4=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-3\right)^{2}.
y^{2}-6y+9-5y-15+4=0
Use the distributive property to multiply -5 by y+3.
y^{2}-11y+9-15+4=0
Combine -6y and -5y to get -11y.
y^{2}-11y-6+4=0
Subtract 15 from 9 to get -6.
y^{2}-11y-2=0
Add -6 and 4 to get -2.
y^{2}-11y=2
Add 2 to both sides. Anything plus zero gives itself.
y^{2}-11y+\left(-\frac{11}{2}\right)^{2}=2+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-11y+\frac{121}{4}=2+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-11y+\frac{121}{4}=\frac{129}{4}
Add 2 to \frac{121}{4}.
\left(y-\frac{11}{2}\right)^{2}=\frac{129}{4}
Factor y^{2}-11y+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{2}\right)^{2}}=\sqrt{\frac{129}{4}}
Take the square root of both sides of the equation.
y-\frac{11}{2}=\frac{\sqrt{129}}{2} y-\frac{11}{2}=-\frac{\sqrt{129}}{2}
Simplify.
y=\frac{\sqrt{129}+11}{2} y=\frac{11-\sqrt{129}}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}