Solve for y
y=6
y=-12
Graph
Share
Copied to clipboard
y^{2}+6y+9=81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
y^{2}+6y+9-81=0
Subtract 81 from both sides.
y^{2}+6y-72=0
Subtract 81 from 9 to get -72.
a+b=6 ab=-72
To solve the equation, factor y^{2}+6y-72 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-6 b=12
The solution is the pair that gives sum 6.
\left(y-6\right)\left(y+12\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=6 y=-12
To find equation solutions, solve y-6=0 and y+12=0.
y^{2}+6y+9=81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
y^{2}+6y+9-81=0
Subtract 81 from both sides.
y^{2}+6y-72=0
Subtract 81 from 9 to get -72.
a+b=6 ab=1\left(-72\right)=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by-72. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-6 b=12
The solution is the pair that gives sum 6.
\left(y^{2}-6y\right)+\left(12y-72\right)
Rewrite y^{2}+6y-72 as \left(y^{2}-6y\right)+\left(12y-72\right).
y\left(y-6\right)+12\left(y-6\right)
Factor out y in the first and 12 in the second group.
\left(y-6\right)\left(y+12\right)
Factor out common term y-6 by using distributive property.
y=6 y=-12
To find equation solutions, solve y-6=0 and y+12=0.
y^{2}+6y+9=81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+3\right)^{2}.
y^{2}+6y+9-81=0
Subtract 81 from both sides.
y^{2}+6y-72=0
Subtract 81 from 9 to get -72.
y=\frac{-6±\sqrt{6^{2}-4\left(-72\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-72\right)}}{2}
Square 6.
y=\frac{-6±\sqrt{36+288}}{2}
Multiply -4 times -72.
y=\frac{-6±\sqrt{324}}{2}
Add 36 to 288.
y=\frac{-6±18}{2}
Take the square root of 324.
y=\frac{12}{2}
Now solve the equation y=\frac{-6±18}{2} when ± is plus. Add -6 to 18.
y=6
Divide 12 by 2.
y=-\frac{24}{2}
Now solve the equation y=\frac{-6±18}{2} when ± is minus. Subtract 18 from -6.
y=-12
Divide -24 by 2.
y=6 y=-12
The equation is now solved.
\sqrt{\left(y+3\right)^{2}}=\sqrt{81}
Take the square root of both sides of the equation.
y+3=9 y+3=-9
Simplify.
y=6 y=-12
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}