Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-18x+81=5^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
x^{2}-18x+81=5
Calculate 5 to the power of 1 and get 5.
x^{2}-18x+81-5=0
Subtract 5 from both sides.
x^{2}-18x+76=0
Subtract 5 from 81 to get 76.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 76}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 76 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 76}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-304}}{2}
Multiply -4 times 76.
x=\frac{-\left(-18\right)±\sqrt{20}}{2}
Add 324 to -304.
x=\frac{-\left(-18\right)±2\sqrt{5}}{2}
Take the square root of 20.
x=\frac{18±2\sqrt{5}}{2}
The opposite of -18 is 18.
x=\frac{2\sqrt{5}+18}{2}
Now solve the equation x=\frac{18±2\sqrt{5}}{2} when ± is plus. Add 18 to 2\sqrt{5}.
x=\sqrt{5}+9
Divide 18+2\sqrt{5} by 2.
x=\frac{18-2\sqrt{5}}{2}
Now solve the equation x=\frac{18±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from 18.
x=9-\sqrt{5}
Divide 18-2\sqrt{5} by 2.
x=\sqrt{5}+9 x=9-\sqrt{5}
The equation is now solved.
x^{2}-18x+81=5^{1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
x^{2}-18x+81=5
Calculate 5 to the power of 1 and get 5.
\left(x-9\right)^{2}=5
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-9=\sqrt{5} x-9=-\sqrt{5}
Simplify.
x=\sqrt{5}+9 x=9-\sqrt{5}
Add 9 to both sides of the equation.