Solve for x
x=2
x=-2
Graph
Share
Copied to clipboard
x^{2}-12x+36+49=\left(4-3x\right)^{2}+\left(x+7\right)\left(x+5\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+85=\left(4-3x\right)^{2}+\left(x+7\right)\left(x+5\right)-2
Add 36 and 49 to get 85.
x^{2}-12x+85=16-24x+9x^{2}+\left(x+7\right)\left(x+5\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-3x\right)^{2}.
x^{2}-12x+85=16-24x+9x^{2}+x^{2}+12x+35-2
Use the distributive property to multiply x+7 by x+5 and combine like terms.
x^{2}-12x+85=16-24x+10x^{2}+12x+35-2
Combine 9x^{2} and x^{2} to get 10x^{2}.
x^{2}-12x+85=16-12x+10x^{2}+35-2
Combine -24x and 12x to get -12x.
x^{2}-12x+85=51-12x+10x^{2}-2
Add 16 and 35 to get 51.
x^{2}-12x+85=49-12x+10x^{2}
Subtract 2 from 51 to get 49.
x^{2}-12x+85+12x=49+10x^{2}
Add 12x to both sides.
x^{2}+85=49+10x^{2}
Combine -12x and 12x to get 0.
x^{2}+85-10x^{2}=49
Subtract 10x^{2} from both sides.
-9x^{2}+85=49
Combine x^{2} and -10x^{2} to get -9x^{2}.
-9x^{2}=49-85
Subtract 85 from both sides.
-9x^{2}=-36
Subtract 85 from 49 to get -36.
x^{2}=\frac{-36}{-9}
Divide both sides by -9.
x^{2}=4
Divide -36 by -9 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
x^{2}-12x+36+49=\left(4-3x\right)^{2}+\left(x+7\right)\left(x+5\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+85=\left(4-3x\right)^{2}+\left(x+7\right)\left(x+5\right)-2
Add 36 and 49 to get 85.
x^{2}-12x+85=16-24x+9x^{2}+\left(x+7\right)\left(x+5\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-3x\right)^{2}.
x^{2}-12x+85=16-24x+9x^{2}+x^{2}+12x+35-2
Use the distributive property to multiply x+7 by x+5 and combine like terms.
x^{2}-12x+85=16-24x+10x^{2}+12x+35-2
Combine 9x^{2} and x^{2} to get 10x^{2}.
x^{2}-12x+85=16-12x+10x^{2}+35-2
Combine -24x and 12x to get -12x.
x^{2}-12x+85=51-12x+10x^{2}-2
Add 16 and 35 to get 51.
x^{2}-12x+85=49-12x+10x^{2}
Subtract 2 from 51 to get 49.
x^{2}-12x+85-49=-12x+10x^{2}
Subtract 49 from both sides.
x^{2}-12x+36=-12x+10x^{2}
Subtract 49 from 85 to get 36.
x^{2}-12x+36+12x=10x^{2}
Add 12x to both sides.
x^{2}+36=10x^{2}
Combine -12x and 12x to get 0.
x^{2}+36-10x^{2}=0
Subtract 10x^{2} from both sides.
-9x^{2}+36=0
Combine x^{2} and -10x^{2} to get -9x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-9\right)\times 36}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-9\right)\times 36}}{2\left(-9\right)}
Square 0.
x=\frac{0±\sqrt{36\times 36}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{0±\sqrt{1296}}{2\left(-9\right)}
Multiply 36 times 36.
x=\frac{0±36}{2\left(-9\right)}
Take the square root of 1296.
x=\frac{0±36}{-18}
Multiply 2 times -9.
x=-2
Now solve the equation x=\frac{0±36}{-18} when ± is plus. Divide 36 by -18.
x=2
Now solve the equation x=\frac{0±36}{-18} when ± is minus. Divide -36 by -18.
x=-2 x=2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}