Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x+25=x-7\left(5+x-7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=x-7\left(-2+x\right)
Subtract 7 from 5 to get -2.
x^{2}-10x+25=x+14-7x
Use the distributive property to multiply -7 by -2+x.
x^{2}-10x+25=-6x+14
Combine x and -7x to get -6x.
x^{2}-10x+25+6x=14
Add 6x to both sides.
x^{2}-4x+25=14
Combine -10x and 6x to get -4x.
x^{2}-4x+25-14=0
Subtract 14 from both sides.
x^{2}-4x+11=0
Subtract 14 from 25 to get 11.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 11}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 11}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-44}}{2}
Multiply -4 times 11.
x=\frac{-\left(-4\right)±\sqrt{-28}}{2}
Add 16 to -44.
x=\frac{-\left(-4\right)±2\sqrt{7}i}{2}
Take the square root of -28.
x=\frac{4±2\sqrt{7}i}{2}
The opposite of -4 is 4.
x=\frac{4+2\sqrt{7}i}{2}
Now solve the equation x=\frac{4±2\sqrt{7}i}{2} when ± is plus. Add 4 to 2i\sqrt{7}.
x=2+\sqrt{7}i
Divide 4+2i\sqrt{7} by 2.
x=\frac{-2\sqrt{7}i+4}{2}
Now solve the equation x=\frac{4±2\sqrt{7}i}{2} when ± is minus. Subtract 2i\sqrt{7} from 4.
x=-\sqrt{7}i+2
Divide 4-2i\sqrt{7} by 2.
x=2+\sqrt{7}i x=-\sqrt{7}i+2
The equation is now solved.
x^{2}-10x+25=x-7\left(5+x-7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=x-7\left(-2+x\right)
Subtract 7 from 5 to get -2.
x^{2}-10x+25=x+14-7x
Use the distributive property to multiply -7 by -2+x.
x^{2}-10x+25=-6x+14
Combine x and -7x to get -6x.
x^{2}-10x+25+6x=14
Add 6x to both sides.
x^{2}-4x+25=14
Combine -10x and 6x to get -4x.
x^{2}-4x=14-25
Subtract 25 from both sides.
x^{2}-4x=-11
Subtract 25 from 14 to get -11.
x^{2}-4x+\left(-2\right)^{2}=-11+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-11+4
Square -2.
x^{2}-4x+4=-7
Add -11 to 4.
\left(x-2\right)^{2}=-7
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-7}
Take the square root of both sides of the equation.
x-2=\sqrt{7}i x-2=-\sqrt{7}i
Simplify.
x=2+\sqrt{7}i x=-\sqrt{7}i+2
Add 2 to both sides of the equation.