Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9=11x-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-11x=-3
Subtract 11x from both sides.
x^{2}-17x+9=-3
Combine -6x and -11x to get -17x.
x^{2}-17x+9+3=0
Add 3 to both sides.
x^{2}-17x+12=0
Add 9 and 3 to get 12.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 12}}{2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-48}}{2}
Multiply -4 times 12.
x=\frac{-\left(-17\right)±\sqrt{241}}{2}
Add 289 to -48.
x=\frac{17±\sqrt{241}}{2}
The opposite of -17 is 17.
x=\frac{\sqrt{241}+17}{2}
Now solve the equation x=\frac{17±\sqrt{241}}{2} when ± is plus. Add 17 to \sqrt{241}.
x=\frac{17-\sqrt{241}}{2}
Now solve the equation x=\frac{17±\sqrt{241}}{2} when ± is minus. Subtract \sqrt{241} from 17.
x=\frac{\sqrt{241}+17}{2} x=\frac{17-\sqrt{241}}{2}
The equation is now solved.
x^{2}-6x+9=11x-3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-11x=-3
Subtract 11x from both sides.
x^{2}-17x+9=-3
Combine -6x and -11x to get -17x.
x^{2}-17x=-3-9
Subtract 9 from both sides.
x^{2}-17x=-12
Subtract 9 from -3 to get -12.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-12+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-12+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{241}{4}
Add -12 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{241}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{241}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{241}}{2} x-\frac{17}{2}=-\frac{\sqrt{241}}{2}
Simplify.
x=\frac{\sqrt{241}+17}{2} x=\frac{17-\sqrt{241}}{2}
Add \frac{17}{2} to both sides of the equation.