Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9=4\left(3x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4\left(9x^{2}-6x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
x^{2}-6x+9=36x^{2}-24x+4
Use the distributive property to multiply 4 by 9x^{2}-6x+1.
x^{2}-6x+9-36x^{2}=-24x+4
Subtract 36x^{2} from both sides.
-35x^{2}-6x+9=-24x+4
Combine x^{2} and -36x^{2} to get -35x^{2}.
-35x^{2}-6x+9+24x=4
Add 24x to both sides.
-35x^{2}+18x+9=4
Combine -6x and 24x to get 18x.
-35x^{2}+18x+9-4=0
Subtract 4 from both sides.
-35x^{2}+18x+5=0
Subtract 4 from 9 to get 5.
a+b=18 ab=-35\times 5=-175
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -35x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,175 -5,35 -7,25
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -175.
-1+175=174 -5+35=30 -7+25=18
Calculate the sum for each pair.
a=25 b=-7
The solution is the pair that gives sum 18.
\left(-35x^{2}+25x\right)+\left(-7x+5\right)
Rewrite -35x^{2}+18x+5 as \left(-35x^{2}+25x\right)+\left(-7x+5\right).
5x\left(-7x+5\right)-7x+5
Factor out 5x in -35x^{2}+25x.
\left(-7x+5\right)\left(5x+1\right)
Factor out common term -7x+5 by using distributive property.
x=\frac{5}{7} x=-\frac{1}{5}
To find equation solutions, solve -7x+5=0 and 5x+1=0.
x^{2}-6x+9=4\left(3x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4\left(9x^{2}-6x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
x^{2}-6x+9=36x^{2}-24x+4
Use the distributive property to multiply 4 by 9x^{2}-6x+1.
x^{2}-6x+9-36x^{2}=-24x+4
Subtract 36x^{2} from both sides.
-35x^{2}-6x+9=-24x+4
Combine x^{2} and -36x^{2} to get -35x^{2}.
-35x^{2}-6x+9+24x=4
Add 24x to both sides.
-35x^{2}+18x+9=4
Combine -6x and 24x to get 18x.
-35x^{2}+18x+9-4=0
Subtract 4 from both sides.
-35x^{2}+18x+5=0
Subtract 4 from 9 to get 5.
x=\frac{-18±\sqrt{18^{2}-4\left(-35\right)\times 5}}{2\left(-35\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -35 for a, 18 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-35\right)\times 5}}{2\left(-35\right)}
Square 18.
x=\frac{-18±\sqrt{324+140\times 5}}{2\left(-35\right)}
Multiply -4 times -35.
x=\frac{-18±\sqrt{324+700}}{2\left(-35\right)}
Multiply 140 times 5.
x=\frac{-18±\sqrt{1024}}{2\left(-35\right)}
Add 324 to 700.
x=\frac{-18±32}{2\left(-35\right)}
Take the square root of 1024.
x=\frac{-18±32}{-70}
Multiply 2 times -35.
x=\frac{14}{-70}
Now solve the equation x=\frac{-18±32}{-70} when ± is plus. Add -18 to 32.
x=-\frac{1}{5}
Reduce the fraction \frac{14}{-70} to lowest terms by extracting and canceling out 14.
x=-\frac{50}{-70}
Now solve the equation x=\frac{-18±32}{-70} when ± is minus. Subtract 32 from -18.
x=\frac{5}{7}
Reduce the fraction \frac{-50}{-70} to lowest terms by extracting and canceling out 10.
x=-\frac{1}{5} x=\frac{5}{7}
The equation is now solved.
x^{2}-6x+9=4\left(3x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4\left(9x^{2}-6x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
x^{2}-6x+9=36x^{2}-24x+4
Use the distributive property to multiply 4 by 9x^{2}-6x+1.
x^{2}-6x+9-36x^{2}=-24x+4
Subtract 36x^{2} from both sides.
-35x^{2}-6x+9=-24x+4
Combine x^{2} and -36x^{2} to get -35x^{2}.
-35x^{2}-6x+9+24x=4
Add 24x to both sides.
-35x^{2}+18x+9=4
Combine -6x and 24x to get 18x.
-35x^{2}+18x=4-9
Subtract 9 from both sides.
-35x^{2}+18x=-5
Subtract 9 from 4 to get -5.
\frac{-35x^{2}+18x}{-35}=-\frac{5}{-35}
Divide both sides by -35.
x^{2}+\frac{18}{-35}x=-\frac{5}{-35}
Dividing by -35 undoes the multiplication by -35.
x^{2}-\frac{18}{35}x=-\frac{5}{-35}
Divide 18 by -35.
x^{2}-\frac{18}{35}x=\frac{1}{7}
Reduce the fraction \frac{-5}{-35} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{18}{35}x+\left(-\frac{9}{35}\right)^{2}=\frac{1}{7}+\left(-\frac{9}{35}\right)^{2}
Divide -\frac{18}{35}, the coefficient of the x term, by 2 to get -\frac{9}{35}. Then add the square of -\frac{9}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{35}x+\frac{81}{1225}=\frac{1}{7}+\frac{81}{1225}
Square -\frac{9}{35} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{35}x+\frac{81}{1225}=\frac{256}{1225}
Add \frac{1}{7} to \frac{81}{1225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{35}\right)^{2}=\frac{256}{1225}
Factor x^{2}-\frac{18}{35}x+\frac{81}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{35}\right)^{2}}=\sqrt{\frac{256}{1225}}
Take the square root of both sides of the equation.
x-\frac{9}{35}=\frac{16}{35} x-\frac{9}{35}=-\frac{16}{35}
Simplify.
x=\frac{5}{7} x=-\frac{1}{5}
Add \frac{9}{35} to both sides of the equation.