Solve for x
x>-\frac{1}{2}
Graph
Share
Copied to clipboard
x^{2}-6x+9<\left(x+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9<x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}-6x+9-x^{2}<8x+16
Subtract x^{2} from both sides.
-6x+9<8x+16
Combine x^{2} and -x^{2} to get 0.
-6x+9-8x<16
Subtract 8x from both sides.
-14x+9<16
Combine -6x and -8x to get -14x.
-14x<16-9
Subtract 9 from both sides.
-14x<7
Subtract 9 from 16 to get 7.
x>\frac{7}{-14}
Divide both sides by -14. Since -14 is negative, the inequality direction is changed.
x>-\frac{1}{2}
Reduce the fraction \frac{7}{-14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}