Solve for x
x = \frac{2 \sqrt{2} + 6}{7} \approx 1.261203875
x=\frac{6-2\sqrt{2}}{7}\approx 0.453081839
Graph
Quiz
Quadratic Equation
5 problems similar to:
{ \left(x-2 \right) }^{ 3 } - { x }^{ 3 } = { x }^{ 2 } -4
Share
Copied to clipboard
x^{3}-6x^{2}+12x-8-x^{3}=x^{2}-4
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
-6x^{2}+12x-8=x^{2}-4
Combine x^{3} and -x^{3} to get 0.
-6x^{2}+12x-8-x^{2}=-4
Subtract x^{2} from both sides.
-7x^{2}+12x-8=-4
Combine -6x^{2} and -x^{2} to get -7x^{2}.
-7x^{2}+12x-8+4=0
Add 4 to both sides.
-7x^{2}+12x-4=0
Add -8 and 4 to get -4.
x=\frac{-12±\sqrt{12^{2}-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 12 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
Square 12.
x=\frac{-12±\sqrt{144+28\left(-4\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-12±\sqrt{144-112}}{2\left(-7\right)}
Multiply 28 times -4.
x=\frac{-12±\sqrt{32}}{2\left(-7\right)}
Add 144 to -112.
x=\frac{-12±4\sqrt{2}}{2\left(-7\right)}
Take the square root of 32.
x=\frac{-12±4\sqrt{2}}{-14}
Multiply 2 times -7.
x=\frac{4\sqrt{2}-12}{-14}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-14} when ± is plus. Add -12 to 4\sqrt{2}.
x=\frac{6-2\sqrt{2}}{7}
Divide -12+4\sqrt{2} by -14.
x=\frac{-4\sqrt{2}-12}{-14}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-14} when ± is minus. Subtract 4\sqrt{2} from -12.
x=\frac{2\sqrt{2}+6}{7}
Divide -12-4\sqrt{2} by -14.
x=\frac{6-2\sqrt{2}}{7} x=\frac{2\sqrt{2}+6}{7}
The equation is now solved.
x^{3}-6x^{2}+12x-8-x^{3}=x^{2}-4
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
-6x^{2}+12x-8=x^{2}-4
Combine x^{3} and -x^{3} to get 0.
-6x^{2}+12x-8-x^{2}=-4
Subtract x^{2} from both sides.
-7x^{2}+12x-8=-4
Combine -6x^{2} and -x^{2} to get -7x^{2}.
-7x^{2}+12x=-4+8
Add 8 to both sides.
-7x^{2}+12x=4
Add -4 and 8 to get 4.
\frac{-7x^{2}+12x}{-7}=\frac{4}{-7}
Divide both sides by -7.
x^{2}+\frac{12}{-7}x=\frac{4}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{12}{7}x=\frac{4}{-7}
Divide 12 by -7.
x^{2}-\frac{12}{7}x=-\frac{4}{7}
Divide 4 by -7.
x^{2}-\frac{12}{7}x+\left(-\frac{6}{7}\right)^{2}=-\frac{4}{7}+\left(-\frac{6}{7}\right)^{2}
Divide -\frac{12}{7}, the coefficient of the x term, by 2 to get -\frac{6}{7}. Then add the square of -\frac{6}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{12}{7}x+\frac{36}{49}=-\frac{4}{7}+\frac{36}{49}
Square -\frac{6}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{12}{7}x+\frac{36}{49}=\frac{8}{49}
Add -\frac{4}{7} to \frac{36}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{6}{7}\right)^{2}=\frac{8}{49}
Factor x^{2}-\frac{12}{7}x+\frac{36}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{6}{7}\right)^{2}}=\sqrt{\frac{8}{49}}
Take the square root of both sides of the equation.
x-\frac{6}{7}=\frac{2\sqrt{2}}{7} x-\frac{6}{7}=-\frac{2\sqrt{2}}{7}
Simplify.
x=\frac{2\sqrt{2}+6}{7} x=\frac{6-2\sqrt{2}}{7}
Add \frac{6}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}