Solve for x
x=12
x=0
Graph
Share
Copied to clipboard
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine -4x and -2x to get -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Add 4 and 1 to get 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Combine 2x and 4x to get 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Add 1 and 4 to get 5.
3x^{2}-6x+5-2x^{2}=6x+5
Subtract 2x^{2} from both sides.
x^{2}-6x+5=6x+5
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-6x+5-6x=5
Subtract 6x from both sides.
x^{2}-12x+5=5
Combine -6x and -6x to get -12x.
x^{2}-12x+5-5=0
Subtract 5 from both sides.
x^{2}-12x=0
Subtract 5 from 5 to get 0.
x\left(x-12\right)=0
Factor out x.
x=0 x=12
To find equation solutions, solve x=0 and x-12=0.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine -4x and -2x to get -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Add 4 and 1 to get 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Combine 2x and 4x to get 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Add 1 and 4 to get 5.
3x^{2}-6x+5-2x^{2}=6x+5
Subtract 2x^{2} from both sides.
x^{2}-6x+5=6x+5
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-6x+5-6x=5
Subtract 6x from both sides.
x^{2}-12x+5=5
Combine -6x and -6x to get -12x.
x^{2}-12x+5-5=0
Subtract 5 from both sides.
x^{2}-12x=0
Subtract 5 from 5 to get 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2}
Take the square root of \left(-12\right)^{2}.
x=\frac{12±12}{2}
The opposite of -12 is 12.
x=\frac{24}{2}
Now solve the equation x=\frac{12±12}{2} when ± is plus. Add 12 to 12.
x=12
Divide 24 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{12±12}{2} when ± is minus. Subtract 12 from 12.
x=0
Divide 0 by 2.
x=12 x=0
The equation is now solved.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine -4x and -2x to get -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Add 4 and 1 to get 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Combine 2x and 4x to get 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Add 1 and 4 to get 5.
3x^{2}-6x+5-2x^{2}=6x+5
Subtract 2x^{2} from both sides.
x^{2}-6x+5=6x+5
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-6x+5-6x=5
Subtract 6x from both sides.
x^{2}-12x+5=5
Combine -6x and -6x to get -12x.
x^{2}-12x+5-5=0
Subtract 5 from both sides.
x^{2}-12x=0
Subtract 5 from 5 to get 0.
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=36
Square -6.
\left(x-6\right)^{2}=36
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-6=6 x-6=-6
Simplify.
x=12 x=0
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}