Solve for x
x=-\frac{1}{2}=-0.5
x=8
Graph
Share
Copied to clipboard
x^{2}-4x+4+\left(x+2\right)^{2}=15\left(x+1\right)+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+4x+4=15\left(x+1\right)+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-4x+4+4x+4=15\left(x+1\right)+1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4+4=15\left(x+1\right)+1
Combine -4x and 4x to get 0.
2x^{2}+8=15\left(x+1\right)+1
Add 4 and 4 to get 8.
2x^{2}+8=15x+15+1
Use the distributive property to multiply 15 by x+1.
2x^{2}+8=15x+16
Add 15 and 1 to get 16.
2x^{2}+8-15x=16
Subtract 15x from both sides.
2x^{2}+8-15x-16=0
Subtract 16 from both sides.
2x^{2}-8-15x=0
Subtract 16 from 8 to get -8.
2x^{2}-15x-8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-15 ab=2\left(-8\right)=-16
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,-16 2,-8 4,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -16.
1-16=-15 2-8=-6 4-4=0
Calculate the sum for each pair.
a=-16 b=1
The solution is the pair that gives sum -15.
\left(2x^{2}-16x\right)+\left(x-8\right)
Rewrite 2x^{2}-15x-8 as \left(2x^{2}-16x\right)+\left(x-8\right).
2x\left(x-8\right)+x-8
Factor out 2x in 2x^{2}-16x.
\left(x-8\right)\left(2x+1\right)
Factor out common term x-8 by using distributive property.
x=8 x=-\frac{1}{2}
To find equation solutions, solve x-8=0 and 2x+1=0.
x^{2}-4x+4+\left(x+2\right)^{2}=15\left(x+1\right)+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+4x+4=15\left(x+1\right)+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-4x+4+4x+4=15\left(x+1\right)+1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4+4=15\left(x+1\right)+1
Combine -4x and 4x to get 0.
2x^{2}+8=15\left(x+1\right)+1
Add 4 and 4 to get 8.
2x^{2}+8=15x+15+1
Use the distributive property to multiply 15 by x+1.
2x^{2}+8=15x+16
Add 15 and 1 to get 16.
2x^{2}+8-15x=16
Subtract 15x from both sides.
2x^{2}+8-15x-16=0
Subtract 16 from both sides.
2x^{2}-8-15x=0
Subtract 16 from 8 to get -8.
2x^{2}-15x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -15 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\left(-8\right)}}{2\times 2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-15\right)±\sqrt{225+64}}{2\times 2}
Multiply -8 times -8.
x=\frac{-\left(-15\right)±\sqrt{289}}{2\times 2}
Add 225 to 64.
x=\frac{-\left(-15\right)±17}{2\times 2}
Take the square root of 289.
x=\frac{15±17}{2\times 2}
The opposite of -15 is 15.
x=\frac{15±17}{4}
Multiply 2 times 2.
x=\frac{32}{4}
Now solve the equation x=\frac{15±17}{4} when ± is plus. Add 15 to 17.
x=8
Divide 32 by 4.
x=-\frac{2}{4}
Now solve the equation x=\frac{15±17}{4} when ± is minus. Subtract 17 from 15.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
x=8 x=-\frac{1}{2}
The equation is now solved.
x^{2}-4x+4+\left(x+2\right)^{2}=15\left(x+1\right)+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}+4x+4=15\left(x+1\right)+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}-4x+4+4x+4=15\left(x+1\right)+1
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4+4=15\left(x+1\right)+1
Combine -4x and 4x to get 0.
2x^{2}+8=15\left(x+1\right)+1
Add 4 and 4 to get 8.
2x^{2}+8=15x+15+1
Use the distributive property to multiply 15 by x+1.
2x^{2}+8=15x+16
Add 15 and 1 to get 16.
2x^{2}+8-15x=16
Subtract 15x from both sides.
2x^{2}-15x=16-8
Subtract 8 from both sides.
2x^{2}-15x=8
Subtract 8 from 16 to get 8.
\frac{2x^{2}-15x}{2}=\frac{8}{2}
Divide both sides by 2.
x^{2}-\frac{15}{2}x=\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{15}{2}x=4
Divide 8 by 2.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=4+\left(-\frac{15}{4}\right)^{2}
Divide -\frac{15}{2}, the coefficient of the x term, by 2 to get -\frac{15}{4}. Then add the square of -\frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{2}x+\frac{225}{16}=4+\frac{225}{16}
Square -\frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{289}{16}
Add 4 to \frac{225}{16}.
\left(x-\frac{15}{4}\right)^{2}=\frac{289}{16}
Factor x^{2}-\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Take the square root of both sides of the equation.
x-\frac{15}{4}=\frac{17}{4} x-\frac{15}{4}=-\frac{17}{4}
Simplify.
x=8 x=-\frac{1}{2}
Add \frac{15}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}