Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-22x+121+\left(\frac{3}{4}x-7+5\right)^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-11\right)^{2}.
x^{2}-22x+121+\left(\frac{3}{4}x-2\right)^{2}=100
Add -7 and 5 to get -2.
x^{2}-22x+121+\frac{9}{16}x^{2}-3x+4=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{4}x-2\right)^{2}.
\frac{25}{16}x^{2}-22x+121-3x+4=100
Combine x^{2} and \frac{9}{16}x^{2} to get \frac{25}{16}x^{2}.
\frac{25}{16}x^{2}-25x+121+4=100
Combine -22x and -3x to get -25x.
\frac{25}{16}x^{2}-25x+125=100
Add 121 and 4 to get 125.
\frac{25}{16}x^{2}-25x+125-100=0
Subtract 100 from both sides.
\frac{25}{16}x^{2}-25x+25=0
Subtract 100 from 125 to get 25.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times \frac{25}{16}\times 25}}{2\times \frac{25}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{25}{16} for a, -25 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times \frac{25}{16}\times 25}}{2\times \frac{25}{16}}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-\frac{25}{4}\times 25}}{2\times \frac{25}{16}}
Multiply -4 times \frac{25}{16}.
x=\frac{-\left(-25\right)±\sqrt{625-\frac{625}{4}}}{2\times \frac{25}{16}}
Multiply -\frac{25}{4} times 25.
x=\frac{-\left(-25\right)±\sqrt{\frac{1875}{4}}}{2\times \frac{25}{16}}
Add 625 to -\frac{625}{4}.
x=\frac{-\left(-25\right)±\frac{25\sqrt{3}}{2}}{2\times \frac{25}{16}}
Take the square root of \frac{1875}{4}.
x=\frac{25±\frac{25\sqrt{3}}{2}}{2\times \frac{25}{16}}
The opposite of -25 is 25.
x=\frac{25±\frac{25\sqrt{3}}{2}}{\frac{25}{8}}
Multiply 2 times \frac{25}{16}.
x=\frac{\frac{25\sqrt{3}}{2}+25}{\frac{25}{8}}
Now solve the equation x=\frac{25±\frac{25\sqrt{3}}{2}}{\frac{25}{8}} when ± is plus. Add 25 to \frac{25\sqrt{3}}{2}.
x=4\sqrt{3}+8
Divide 25+\frac{25\sqrt{3}}{2} by \frac{25}{8} by multiplying 25+\frac{25\sqrt{3}}{2} by the reciprocal of \frac{25}{8}.
x=\frac{-\frac{25\sqrt{3}}{2}+25}{\frac{25}{8}}
Now solve the equation x=\frac{25±\frac{25\sqrt{3}}{2}}{\frac{25}{8}} when ± is minus. Subtract \frac{25\sqrt{3}}{2} from 25.
x=8-4\sqrt{3}
Divide 25-\frac{25\sqrt{3}}{2} by \frac{25}{8} by multiplying 25-\frac{25\sqrt{3}}{2} by the reciprocal of \frac{25}{8}.
x=4\sqrt{3}+8 x=8-4\sqrt{3}
The equation is now solved.
x^{2}-22x+121+\left(\frac{3}{4}x-7+5\right)^{2}=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-11\right)^{2}.
x^{2}-22x+121+\left(\frac{3}{4}x-2\right)^{2}=100
Add -7 and 5 to get -2.
x^{2}-22x+121+\frac{9}{16}x^{2}-3x+4=100
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{4}x-2\right)^{2}.
\frac{25}{16}x^{2}-22x+121-3x+4=100
Combine x^{2} and \frac{9}{16}x^{2} to get \frac{25}{16}x^{2}.
\frac{25}{16}x^{2}-25x+121+4=100
Combine -22x and -3x to get -25x.
\frac{25}{16}x^{2}-25x+125=100
Add 121 and 4 to get 125.
\frac{25}{16}x^{2}-25x=100-125
Subtract 125 from both sides.
\frac{25}{16}x^{2}-25x=-25
Subtract 125 from 100 to get -25.
\frac{\frac{25}{16}x^{2}-25x}{\frac{25}{16}}=-\frac{25}{\frac{25}{16}}
Divide both sides of the equation by \frac{25}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{25}{\frac{25}{16}}\right)x=-\frac{25}{\frac{25}{16}}
Dividing by \frac{25}{16} undoes the multiplication by \frac{25}{16}.
x^{2}-16x=-\frac{25}{\frac{25}{16}}
Divide -25 by \frac{25}{16} by multiplying -25 by the reciprocal of \frac{25}{16}.
x^{2}-16x=-16
Divide -25 by \frac{25}{16} by multiplying -25 by the reciprocal of \frac{25}{16}.
x^{2}-16x+\left(-8\right)^{2}=-16+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-16+64
Square -8.
x^{2}-16x+64=48
Add -16 to 64.
\left(x-8\right)^{2}=48
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{48}
Take the square root of both sides of the equation.
x-8=4\sqrt{3} x-8=-4\sqrt{3}
Simplify.
x=4\sqrt{3}+8 x=8-4\sqrt{3}
Add 8 to both sides of the equation.