Solve for x (complex solution)
x=i
x=-i
Graph
Share
Copied to clipboard
x^{3}-3x^{2}+3x-1+\frac{3}{2}\left(x\left(x+6\right)+1\right)=\left(2+x\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1+\frac{3}{2}\left(x^{2}+6x+1\right)=\left(2+x\right)^{3}
Use the distributive property to multiply x by x+6.
x^{3}-3x^{2}+3x-1+\frac{3}{2}x^{2}+9x+\frac{3}{2}=\left(2+x\right)^{3}
Use the distributive property to multiply \frac{3}{2} by x^{2}+6x+1.
x^{3}-\frac{3}{2}x^{2}+3x-1+9x+\frac{3}{2}=\left(2+x\right)^{3}
Combine -3x^{2} and \frac{3}{2}x^{2} to get -\frac{3}{2}x^{2}.
x^{3}-\frac{3}{2}x^{2}+12x-1+\frac{3}{2}=\left(2+x\right)^{3}
Combine 3x and 9x to get 12x.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}=\left(2+x\right)^{3}
Add -1 and \frac{3}{2} to get \frac{1}{2}.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}=8+12x+6x^{2}+x^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2+x\right)^{3}.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}-12x=8+6x^{2}+x^{3}
Subtract 12x from both sides.
x^{3}-\frac{3}{2}x^{2}+\frac{1}{2}=8+6x^{2}+x^{3}
Combine 12x and -12x to get 0.
x^{3}-\frac{3}{2}x^{2}+\frac{1}{2}-6x^{2}=8+x^{3}
Subtract 6x^{2} from both sides.
x^{3}-\frac{15}{2}x^{2}+\frac{1}{2}=8+x^{3}
Combine -\frac{3}{2}x^{2} and -6x^{2} to get -\frac{15}{2}x^{2}.
x^{3}-\frac{15}{2}x^{2}+\frac{1}{2}-x^{3}=8
Subtract x^{3} from both sides.
-\frac{15}{2}x^{2}+\frac{1}{2}=8
Combine x^{3} and -x^{3} to get 0.
-\frac{15}{2}x^{2}=8-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{15}{2}x^{2}=\frac{15}{2}
Subtract \frac{1}{2} from 8 to get \frac{15}{2}.
x^{2}=\frac{15}{2}\left(-\frac{2}{15}\right)
Multiply both sides by -\frac{2}{15}, the reciprocal of -\frac{15}{2}.
x^{2}=-1
Multiply \frac{15}{2} and -\frac{2}{15} to get -1.
x=i x=-i
The equation is now solved.
x^{3}-3x^{2}+3x-1+\frac{3}{2}\left(x\left(x+6\right)+1\right)=\left(2+x\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1+\frac{3}{2}\left(x^{2}+6x+1\right)=\left(2+x\right)^{3}
Use the distributive property to multiply x by x+6.
x^{3}-3x^{2}+3x-1+\frac{3}{2}x^{2}+9x+\frac{3}{2}=\left(2+x\right)^{3}
Use the distributive property to multiply \frac{3}{2} by x^{2}+6x+1.
x^{3}-\frac{3}{2}x^{2}+3x-1+9x+\frac{3}{2}=\left(2+x\right)^{3}
Combine -3x^{2} and \frac{3}{2}x^{2} to get -\frac{3}{2}x^{2}.
x^{3}-\frac{3}{2}x^{2}+12x-1+\frac{3}{2}=\left(2+x\right)^{3}
Combine 3x and 9x to get 12x.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}=\left(2+x\right)^{3}
Add -1 and \frac{3}{2} to get \frac{1}{2}.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}=8+12x+6x^{2}+x^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2+x\right)^{3}.
x^{3}-\frac{3}{2}x^{2}+12x+\frac{1}{2}-8=12x+6x^{2}+x^{3}
Subtract 8 from both sides.
x^{3}-\frac{3}{2}x^{2}+12x-\frac{15}{2}=12x+6x^{2}+x^{3}
Subtract 8 from \frac{1}{2} to get -\frac{15}{2}.
x^{3}-\frac{3}{2}x^{2}+12x-\frac{15}{2}-12x=6x^{2}+x^{3}
Subtract 12x from both sides.
x^{3}-\frac{3}{2}x^{2}-\frac{15}{2}=6x^{2}+x^{3}
Combine 12x and -12x to get 0.
x^{3}-\frac{3}{2}x^{2}-\frac{15}{2}-6x^{2}=x^{3}
Subtract 6x^{2} from both sides.
x^{3}-\frac{15}{2}x^{2}-\frac{15}{2}=x^{3}
Combine -\frac{3}{2}x^{2} and -6x^{2} to get -\frac{15}{2}x^{2}.
x^{3}-\frac{15}{2}x^{2}-\frac{15}{2}-x^{3}=0
Subtract x^{3} from both sides.
-\frac{15}{2}x^{2}-\frac{15}{2}=0
Combine x^{3} and -x^{3} to get 0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{15}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{15}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{15}{2} for a, 0 for b, and -\frac{15}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{15}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{15}{2}\right)}
Square 0.
x=\frac{0±\sqrt{30\left(-\frac{15}{2}\right)}}{2\left(-\frac{15}{2}\right)}
Multiply -4 times -\frac{15}{2}.
x=\frac{0±\sqrt{-225}}{2\left(-\frac{15}{2}\right)}
Multiply 30 times -\frac{15}{2}.
x=\frac{0±15i}{2\left(-\frac{15}{2}\right)}
Take the square root of -225.
x=\frac{0±15i}{-15}
Multiply 2 times -\frac{15}{2}.
x=-i
Now solve the equation x=\frac{0±15i}{-15} when ± is plus.
x=i
Now solve the equation x=\frac{0±15i}{-15} when ± is minus.
x=-i x=i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}