Solve for x
x=\frac{1}{2}=0.5
x=1
Graph
Share
Copied to clipboard
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1-x^{3}=-x^{2}
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-x^{2}
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+x^{2}=0
Add x^{2} to both sides.
-2x^{2}+3x-1=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
a+b=3 ab=-2\left(-1\right)=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=2 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-2x^{2}+2x\right)+\left(x-1\right)
Rewrite -2x^{2}+3x-1 as \left(-2x^{2}+2x\right)+\left(x-1\right).
2x\left(-x+1\right)-\left(-x+1\right)
Factor out 2x in the first and -1 in the second group.
\left(-x+1\right)\left(2x-1\right)
Factor out common term -x+1 by using distributive property.
x=1 x=\frac{1}{2}
To find equation solutions, solve -x+1=0 and 2x-1=0.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1-x^{3}=-x^{2}
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-x^{2}
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+x^{2}=0
Add x^{2} to both sides.
-2x^{2}+3x-1=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 3.
x=\frac{-3±\sqrt{9+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-3±\sqrt{9-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{-3±\sqrt{1}}{2\left(-2\right)}
Add 9 to -8.
x=\frac{-3±1}{2\left(-2\right)}
Take the square root of 1.
x=\frac{-3±1}{-4}
Multiply 2 times -2.
x=-\frac{2}{-4}
Now solve the equation x=\frac{-3±1}{-4} when ± is plus. Add -3 to 1.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{-4}
Now solve the equation x=\frac{-3±1}{-4} when ± is minus. Subtract 1 from -3.
x=1
Divide -4 by -4.
x=\frac{1}{2} x=1
The equation is now solved.
x^{3}-3x^{2}+3x-1=x^{2}\left(x-1\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
x^{3}-3x^{2}+3x-1=x^{3}-x^{2}
Use the distributive property to multiply x^{2} by x-1.
x^{3}-3x^{2}+3x-1-x^{3}=-x^{2}
Subtract x^{3} from both sides.
-3x^{2}+3x-1=-x^{2}
Combine x^{3} and -x^{3} to get 0.
-3x^{2}+3x-1+x^{2}=0
Add x^{2} to both sides.
-2x^{2}+3x-1=0
Combine -3x^{2} and x^{2} to get -2x^{2}.
-2x^{2}+3x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}+3x}{-2}=\frac{1}{-2}
Divide both sides by -2.
x^{2}+\frac{3}{-2}x=\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{3}{2}x=\frac{1}{-2}
Divide 3 by -2.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Divide 1 by -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Simplify.
x=1 x=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}