Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+1+\left(8x-8\right)^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+64x^{2}-128x+64=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-8\right)^{2}.
65x^{2}-2x+1-128x+64=4
Combine x^{2} and 64x^{2} to get 65x^{2}.
65x^{2}-130x+1+64=4
Combine -2x and -128x to get -130x.
65x^{2}-130x+65=4
Add 1 and 64 to get 65.
65x^{2}-130x+65-4=0
Subtract 4 from both sides.
65x^{2}-130x+61=0
Subtract 4 from 65 to get 61.
x=\frac{-\left(-130\right)±\sqrt{\left(-130\right)^{2}-4\times 65\times 61}}{2\times 65}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 65 for a, -130 for b, and 61 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-130\right)±\sqrt{16900-4\times 65\times 61}}{2\times 65}
Square -130.
x=\frac{-\left(-130\right)±\sqrt{16900-260\times 61}}{2\times 65}
Multiply -4 times 65.
x=\frac{-\left(-130\right)±\sqrt{16900-15860}}{2\times 65}
Multiply -260 times 61.
x=\frac{-\left(-130\right)±\sqrt{1040}}{2\times 65}
Add 16900 to -15860.
x=\frac{-\left(-130\right)±4\sqrt{65}}{2\times 65}
Take the square root of 1040.
x=\frac{130±4\sqrt{65}}{2\times 65}
The opposite of -130 is 130.
x=\frac{130±4\sqrt{65}}{130}
Multiply 2 times 65.
x=\frac{4\sqrt{65}+130}{130}
Now solve the equation x=\frac{130±4\sqrt{65}}{130} when ± is plus. Add 130 to 4\sqrt{65}.
x=\frac{2\sqrt{65}}{65}+1
Divide 130+4\sqrt{65} by 130.
x=\frac{130-4\sqrt{65}}{130}
Now solve the equation x=\frac{130±4\sqrt{65}}{130} when ± is minus. Subtract 4\sqrt{65} from 130.
x=-\frac{2\sqrt{65}}{65}+1
Divide 130-4\sqrt{65} by 130.
x=\frac{2\sqrt{65}}{65}+1 x=-\frac{2\sqrt{65}}{65}+1
The equation is now solved.
x^{2}-2x+1+\left(8x-8\right)^{2}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+64x^{2}-128x+64=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-8\right)^{2}.
65x^{2}-2x+1-128x+64=4
Combine x^{2} and 64x^{2} to get 65x^{2}.
65x^{2}-130x+1+64=4
Combine -2x and -128x to get -130x.
65x^{2}-130x+65=4
Add 1 and 64 to get 65.
65x^{2}-130x=4-65
Subtract 65 from both sides.
65x^{2}-130x=-61
Subtract 65 from 4 to get -61.
\frac{65x^{2}-130x}{65}=-\frac{61}{65}
Divide both sides by 65.
x^{2}+\left(-\frac{130}{65}\right)x=-\frac{61}{65}
Dividing by 65 undoes the multiplication by 65.
x^{2}-2x=-\frac{61}{65}
Divide -130 by 65.
x^{2}-2x+1=-\frac{61}{65}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{4}{65}
Add -\frac{61}{65} to 1.
\left(x-1\right)^{2}=\frac{4}{65}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{4}{65}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{65}}{65} x-1=-\frac{2\sqrt{65}}{65}
Simplify.
x=\frac{2\sqrt{65}}{65}+1 x=-\frac{2\sqrt{65}}{65}+1
Add 1 to both sides of the equation.