Solve for x
x=\frac{13}{4}-2y
Solve for y
y=-\frac{x}{2}+\frac{13}{8}
Graph
Quiz
Linear Equation
5 problems similar to:
{ \left(x- \frac{ 1 }{ 2 } \right) }^{ 2 } -2y=1-(2-x)(2+x)
Share
Copied to clipboard
x^{2}-x+\frac{1}{4}-2y=1-\left(2-x\right)\left(2+x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-2y=1-\left(4-x^{2}\right)
Consider \left(2-x\right)\left(2+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}-x+\frac{1}{4}-2y=1-4+x^{2}
To find the opposite of 4-x^{2}, find the opposite of each term.
x^{2}-x+\frac{1}{4}-2y=-3+x^{2}
Subtract 4 from 1 to get -3.
x^{2}-x+\frac{1}{4}-2y-x^{2}=-3
Subtract x^{2} from both sides.
-x+\frac{1}{4}-2y=-3
Combine x^{2} and -x^{2} to get 0.
-x-2y=-3-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-x-2y=-\frac{13}{4}
Subtract \frac{1}{4} from -3 to get -\frac{13}{4}.
-x=-\frac{13}{4}+2y
Add 2y to both sides.
-x=2y-\frac{13}{4}
The equation is in standard form.
\frac{-x}{-1}=\frac{2y-\frac{13}{4}}{-1}
Divide both sides by -1.
x=\frac{2y-\frac{13}{4}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=\frac{13}{4}-2y
Divide -\frac{13}{4}+2y by -1.
x^{2}-x+\frac{1}{4}-2y=1-\left(2-x\right)\left(2+x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
x^{2}-x+\frac{1}{4}-2y=1-\left(4-x^{2}\right)
Consider \left(2-x\right)\left(2+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
x^{2}-x+\frac{1}{4}-2y=1-4+x^{2}
To find the opposite of 4-x^{2}, find the opposite of each term.
x^{2}-x+\frac{1}{4}-2y=-3+x^{2}
Subtract 4 from 1 to get -3.
-x+\frac{1}{4}-2y=-3+x^{2}-x^{2}
Subtract x^{2} from both sides.
-x+\frac{1}{4}-2y=-3
Combine x^{2} and -x^{2} to get 0.
\frac{1}{4}-2y=-3+x
Add x to both sides.
-2y=-3+x-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-2y=-\frac{13}{4}+x
Subtract \frac{1}{4} from -3 to get -\frac{13}{4}.
-2y=x-\frac{13}{4}
The equation is in standard form.
\frac{-2y}{-2}=\frac{x-\frac{13}{4}}{-2}
Divide both sides by -2.
y=\frac{x-\frac{13}{4}}{-2}
Dividing by -2 undoes the multiplication by -2.
y=-\frac{x}{2}+\frac{13}{8}
Divide -\frac{13}{4}+x by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}