Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+16x+64=\left(x+4\right)^{2}+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
x^{2}+16x+64=x^{2}+8x+16+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+16x+64=2x^{2}+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}+16x+64-2x^{2}=8x+16
Subtract 2x^{2} from both sides.
-x^{2}+16x+64=8x+16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+16x+64-8x=16
Subtract 8x from both sides.
-x^{2}+8x+64=16
Combine 16x and -8x to get 8x.
-x^{2}+8x+64-16=0
Subtract 16 from both sides.
-x^{2}+8x+48=0
Subtract 16 from 64 to get 48.
a+b=8 ab=-48=-48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=12 b=-4
The solution is the pair that gives sum 8.
\left(-x^{2}+12x\right)+\left(-4x+48\right)
Rewrite -x^{2}+8x+48 as \left(-x^{2}+12x\right)+\left(-4x+48\right).
-x\left(x-12\right)-4\left(x-12\right)
Factor out -x in the first and -4 in the second group.
\left(x-12\right)\left(-x-4\right)
Factor out common term x-12 by using distributive property.
x=12 x=-4
To find equation solutions, solve x-12=0 and -x-4=0.
x^{2}+16x+64=\left(x+4\right)^{2}+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
x^{2}+16x+64=x^{2}+8x+16+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+16x+64=2x^{2}+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}+16x+64-2x^{2}=8x+16
Subtract 2x^{2} from both sides.
-x^{2}+16x+64=8x+16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+16x+64-8x=16
Subtract 8x from both sides.
-x^{2}+8x+64=16
Combine 16x and -8x to get 8x.
-x^{2}+8x+64-16=0
Subtract 16 from both sides.
-x^{2}+8x+48=0
Subtract 16 from 64 to get 48.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 48}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 48}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 48}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+192}}{2\left(-1\right)}
Multiply 4 times 48.
x=\frac{-8±\sqrt{256}}{2\left(-1\right)}
Add 64 to 192.
x=\frac{-8±16}{2\left(-1\right)}
Take the square root of 256.
x=\frac{-8±16}{-2}
Multiply 2 times -1.
x=\frac{8}{-2}
Now solve the equation x=\frac{-8±16}{-2} when ± is plus. Add -8 to 16.
x=-4
Divide 8 by -2.
x=-\frac{24}{-2}
Now solve the equation x=\frac{-8±16}{-2} when ± is minus. Subtract 16 from -8.
x=12
Divide -24 by -2.
x=-4 x=12
The equation is now solved.
x^{2}+16x+64=\left(x+4\right)^{2}+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
x^{2}+16x+64=x^{2}+8x+16+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+16x+64=2x^{2}+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}+16x+64-2x^{2}=8x+16
Subtract 2x^{2} from both sides.
-x^{2}+16x+64=8x+16
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+16x+64-8x=16
Subtract 8x from both sides.
-x^{2}+8x+64=16
Combine 16x and -8x to get 8x.
-x^{2}+8x=16-64
Subtract 64 from both sides.
-x^{2}+8x=-48
Subtract 64 from 16 to get -48.
\frac{-x^{2}+8x}{-1}=-\frac{48}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=-\frac{48}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=-\frac{48}{-1}
Divide 8 by -1.
x^{2}-8x=48
Divide -48 by -1.
x^{2}-8x+\left(-4\right)^{2}=48+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=48+16
Square -4.
x^{2}-8x+16=64
Add 48 to 16.
\left(x-4\right)^{2}=64
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-4=8 x-4=-8
Simplify.
x=12 x=-4
Add 4 to both sides of the equation.