Solve for x (complex solution)
x=\frac{-i\times 3\sqrt{21}-15}{2}\approx -7.5-6.873863542i
x=\frac{-15+i\times 3\sqrt{21}}{2}\approx -7.5+6.873863542i
Graph
Share
Copied to clipboard
\left(x+7.5\right)^{2}=-\left(\sqrt{47.25}\right)^{2}
Subtracting \left(\sqrt{47.25}\right)^{2} from itself leaves 0.
\left(x+7.5\right)^{2}=-47.25
Subtract \left(\sqrt{47.25}\right)^{2} from 0.
x+7.5=\frac{3\sqrt{21}i}{2} x+7.5=-\frac{3\sqrt{21}i}{2}
Take the square root of both sides of the equation.
x+7.5-7.5=\frac{3\sqrt{21}i}{2}-7.5 x+7.5-7.5=-\frac{3\sqrt{21}i}{2}-7.5
Subtract 7.5 from both sides of the equation.
x=\frac{3\sqrt{21}i}{2}-7.5 x=-\frac{3\sqrt{21}i}{2}-7.5
Subtracting 7.5 from itself leaves 0.
x=\frac{-15+3\sqrt{21}i}{2}
Subtract 7.5 from \frac{3i\sqrt{21}}{2}.
x=\frac{-3\sqrt{21}i-15}{2}
Subtract 7.5 from -\frac{3i\sqrt{21}}{2}.
x=\frac{-15+3\sqrt{21}i}{2} x=\frac{-3\sqrt{21}i-15}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}