Solve for x
x = -\frac{1040}{29} = -35\frac{25}{29} \approx -35.862068966
Graph
Share
Copied to clipboard
x^{2}+12x+36=\left(64+x\right)^{2}+100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+6\right)^{2}.
x^{2}+12x+36=4096+128x+x^{2}+100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(64+x\right)^{2}.
x^{2}+12x+36=4196+128x+x^{2}
Add 4096 and 100 to get 4196.
x^{2}+12x+36-128x=4196+x^{2}
Subtract 128x from both sides.
x^{2}-116x+36=4196+x^{2}
Combine 12x and -128x to get -116x.
x^{2}-116x+36-x^{2}=4196
Subtract x^{2} from both sides.
-116x+36=4196
Combine x^{2} and -x^{2} to get 0.
-116x=4196-36
Subtract 36 from both sides.
-116x=4160
Subtract 36 from 4196 to get 4160.
x=\frac{4160}{-116}
Divide both sides by -116.
x=-\frac{1040}{29}
Reduce the fraction \frac{4160}{-116} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}