Solve for x
x = -\frac{41}{8} = -5\frac{1}{8} = -5.125
Graph
Share
Copied to clipboard
x^{2}+8x+16-\left(x-5\right)\left(x+5\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-\left(x^{2}-25\right)=0
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}+8x+16-x^{2}+25=0
To find the opposite of x^{2}-25, find the opposite of each term.
8x+16+25=0
Combine x^{2} and -x^{2} to get 0.
8x+41=0
Add 16 and 25 to get 41.
8x=-41
Subtract 41 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-41}{8}
Divide both sides by 8.
x=-\frac{41}{8}
Fraction \frac{-41}{8} can be rewritten as -\frac{41}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}