Solve for x
x=4
Graph
Share
Copied to clipboard
x^{3}+9x^{2}+27x+27-\left(x-4\right)^{3}=21x^{2}+7
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+3\right)^{3}.
x^{3}+9x^{2}+27x+27-\left(x^{3}-12x^{2}+48x-64\right)=21x^{2}+7
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-4\right)^{3}.
x^{3}+9x^{2}+27x+27-x^{3}+12x^{2}-48x+64=21x^{2}+7
To find the opposite of x^{3}-12x^{2}+48x-64, find the opposite of each term.
9x^{2}+27x+27+12x^{2}-48x+64=21x^{2}+7
Combine x^{3} and -x^{3} to get 0.
21x^{2}+27x+27-48x+64=21x^{2}+7
Combine 9x^{2} and 12x^{2} to get 21x^{2}.
21x^{2}-21x+27+64=21x^{2}+7
Combine 27x and -48x to get -21x.
21x^{2}-21x+91=21x^{2}+7
Add 27 and 64 to get 91.
21x^{2}-21x+91-21x^{2}=7
Subtract 21x^{2} from both sides.
-21x+91=7
Combine 21x^{2} and -21x^{2} to get 0.
-21x=7-91
Subtract 91 from both sides.
-21x=-84
Subtract 91 from 7 to get -84.
x=\frac{-84}{-21}
Divide both sides by -21.
x=4
Divide -84 by -21 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}