Solve for x (complex solution)
x=5+8\sqrt{3}i\approx 5+13.856406461i
x=-8\sqrt{3}i+5\approx 5-13.856406461i
Graph
Share
Copied to clipboard
x^{2}+6x+9=16\left(x-13\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=16x-208
Use the distributive property to multiply 16 by x-13.
x^{2}+6x+9-16x=-208
Subtract 16x from both sides.
x^{2}-10x+9=-208
Combine 6x and -16x to get -10x.
x^{2}-10x+9+208=0
Add 208 to both sides.
x^{2}-10x+217=0
Add 9 and 208 to get 217.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 217}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 217 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 217}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-868}}{2}
Multiply -4 times 217.
x=\frac{-\left(-10\right)±\sqrt{-768}}{2}
Add 100 to -868.
x=\frac{-\left(-10\right)±16\sqrt{3}i}{2}
Take the square root of -768.
x=\frac{10±16\sqrt{3}i}{2}
The opposite of -10 is 10.
x=\frac{10+16\sqrt{3}i}{2}
Now solve the equation x=\frac{10±16\sqrt{3}i}{2} when ± is plus. Add 10 to 16i\sqrt{3}.
x=5+8\sqrt{3}i
Divide 10+16i\sqrt{3} by 2.
x=\frac{-16\sqrt{3}i+10}{2}
Now solve the equation x=\frac{10±16\sqrt{3}i}{2} when ± is minus. Subtract 16i\sqrt{3} from 10.
x=-8\sqrt{3}i+5
Divide 10-16i\sqrt{3} by 2.
x=5+8\sqrt{3}i x=-8\sqrt{3}i+5
The equation is now solved.
x^{2}+6x+9=16\left(x-13\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=16x-208
Use the distributive property to multiply 16 by x-13.
x^{2}+6x+9-16x=-208
Subtract 16x from both sides.
x^{2}-10x+9=-208
Combine 6x and -16x to get -10x.
x^{2}-10x=-208-9
Subtract 9 from both sides.
x^{2}-10x=-217
Subtract 9 from -208 to get -217.
x^{2}-10x+\left(-5\right)^{2}=-217+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-217+25
Square -5.
x^{2}-10x+25=-192
Add -217 to 25.
\left(x-5\right)^{2}=-192
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-192}
Take the square root of both sides of the equation.
x-5=8\sqrt{3}i x-5=-8\sqrt{3}i
Simplify.
x=5+8\sqrt{3}i x=-8\sqrt{3}i+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}