Solve for x (complex solution)
x=\frac{-7+\sqrt{31}i}{4}\approx -1.75+1.391941091i
x=\frac{-\sqrt{31}i-7}{4}\approx -1.75-1.391941091i
Graph
Share
Copied to clipboard
x^{2}+4x+4+2=\frac{1}{2}x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+6=\frac{1}{2}x+1
Add 4 and 2 to get 6.
x^{2}+4x+6-\frac{1}{2}x=1
Subtract \frac{1}{2}x from both sides.
x^{2}+\frac{7}{2}x+6=1
Combine 4x and -\frac{1}{2}x to get \frac{7}{2}x.
x^{2}+\frac{7}{2}x+6-1=0
Subtract 1 from both sides.
x^{2}+\frac{7}{2}x+5=0
Subtract 1 from 6 to get 5.
x=\frac{-\frac{7}{2}±\sqrt{\left(\frac{7}{2}\right)^{2}-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{7}{2} for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}-4\times 5}}{2}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}-20}}{2}
Multiply -4 times 5.
x=\frac{-\frac{7}{2}±\sqrt{-\frac{31}{4}}}{2}
Add \frac{49}{4} to -20.
x=\frac{-\frac{7}{2}±\frac{\sqrt{31}i}{2}}{2}
Take the square root of -\frac{31}{4}.
x=\frac{-7+\sqrt{31}i}{2\times 2}
Now solve the equation x=\frac{-\frac{7}{2}±\frac{\sqrt{31}i}{2}}{2} when ± is plus. Add -\frac{7}{2} to \frac{i\sqrt{31}}{2}.
x=\frac{-7+\sqrt{31}i}{4}
Divide \frac{-7+i\sqrt{31}}{2} by 2.
x=\frac{-\sqrt{31}i-7}{2\times 2}
Now solve the equation x=\frac{-\frac{7}{2}±\frac{\sqrt{31}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{31}}{2} from -\frac{7}{2}.
x=\frac{-\sqrt{31}i-7}{4}
Divide \frac{-7-i\sqrt{31}}{2} by 2.
x=\frac{-7+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-7}{4}
The equation is now solved.
x^{2}+4x+4+2=\frac{1}{2}x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+6=\frac{1}{2}x+1
Add 4 and 2 to get 6.
x^{2}+4x+6-\frac{1}{2}x=1
Subtract \frac{1}{2}x from both sides.
x^{2}+\frac{7}{2}x+6=1
Combine 4x and -\frac{1}{2}x to get \frac{7}{2}x.
x^{2}+\frac{7}{2}x=1-6
Subtract 6 from both sides.
x^{2}+\frac{7}{2}x=-5
Subtract 6 from 1 to get -5.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-5+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-5+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{31}{16}
Add -5 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=-\frac{31}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{\sqrt{31}i}{4} x+\frac{7}{4}=-\frac{\sqrt{31}i}{4}
Simplify.
x=\frac{-7+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i-7}{4}
Subtract \frac{7}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}