Solve for x
x=2\sqrt{30}+9\approx 19.95445115
x=9-2\sqrt{30}\approx -1.95445115
Graph
Share
Copied to clipboard
x^{2}+28x+196-\left(x+11\right)^{2}=\left(x-6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+14\right)^{2}.
x^{2}+28x+196-\left(x^{2}+22x+121\right)=\left(x-6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+11\right)^{2}.
x^{2}+28x+196-x^{2}-22x-121=\left(x-6\right)^{2}
To find the opposite of x^{2}+22x+121, find the opposite of each term.
28x+196-22x-121=\left(x-6\right)^{2}
Combine x^{2} and -x^{2} to get 0.
6x+196-121=\left(x-6\right)^{2}
Combine 28x and -22x to get 6x.
6x+75=\left(x-6\right)^{2}
Subtract 121 from 196 to get 75.
6x+75=x^{2}-12x+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
6x+75-x^{2}=-12x+36
Subtract x^{2} from both sides.
6x+75-x^{2}+12x=36
Add 12x to both sides.
18x+75-x^{2}=36
Combine 6x and 12x to get 18x.
18x+75-x^{2}-36=0
Subtract 36 from both sides.
18x+39-x^{2}=0
Subtract 36 from 75 to get 39.
-x^{2}+18x+39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-18±\sqrt{18^{2}-4\left(-1\right)\times 39}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 18 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-1\right)\times 39}}{2\left(-1\right)}
Square 18.
x=\frac{-18±\sqrt{324+4\times 39}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-18±\sqrt{324+156}}{2\left(-1\right)}
Multiply 4 times 39.
x=\frac{-18±\sqrt{480}}{2\left(-1\right)}
Add 324 to 156.
x=\frac{-18±4\sqrt{30}}{2\left(-1\right)}
Take the square root of 480.
x=\frac{-18±4\sqrt{30}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{30}-18}{-2}
Now solve the equation x=\frac{-18±4\sqrt{30}}{-2} when ± is plus. Add -18 to 4\sqrt{30}.
x=9-2\sqrt{30}
Divide -18+4\sqrt{30} by -2.
x=\frac{-4\sqrt{30}-18}{-2}
Now solve the equation x=\frac{-18±4\sqrt{30}}{-2} when ± is minus. Subtract 4\sqrt{30} from -18.
x=2\sqrt{30}+9
Divide -18-4\sqrt{30} by -2.
x=9-2\sqrt{30} x=2\sqrt{30}+9
The equation is now solved.
x^{2}+28x+196-\left(x+11\right)^{2}=\left(x-6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+14\right)^{2}.
x^{2}+28x+196-\left(x^{2}+22x+121\right)=\left(x-6\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+11\right)^{2}.
x^{2}+28x+196-x^{2}-22x-121=\left(x-6\right)^{2}
To find the opposite of x^{2}+22x+121, find the opposite of each term.
28x+196-22x-121=\left(x-6\right)^{2}
Combine x^{2} and -x^{2} to get 0.
6x+196-121=\left(x-6\right)^{2}
Combine 28x and -22x to get 6x.
6x+75=\left(x-6\right)^{2}
Subtract 121 from 196 to get 75.
6x+75=x^{2}-12x+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
6x+75-x^{2}=-12x+36
Subtract x^{2} from both sides.
6x+75-x^{2}+12x=36
Add 12x to both sides.
18x+75-x^{2}=36
Combine 6x and 12x to get 18x.
18x-x^{2}=36-75
Subtract 75 from both sides.
18x-x^{2}=-39
Subtract 75 from 36 to get -39.
-x^{2}+18x=-39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+18x}{-1}=-\frac{39}{-1}
Divide both sides by -1.
x^{2}+\frac{18}{-1}x=-\frac{39}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-18x=-\frac{39}{-1}
Divide 18 by -1.
x^{2}-18x=39
Divide -39 by -1.
x^{2}-18x+\left(-9\right)^{2}=39+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=39+81
Square -9.
x^{2}-18x+81=120
Add 39 to 81.
\left(x-9\right)^{2}=120
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{120}
Take the square root of both sides of the equation.
x-9=2\sqrt{30} x-9=-2\sqrt{30}
Simplify.
x=2\sqrt{30}+9 x=9-2\sqrt{30}
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}