Skip to main content
Solve for x
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+20x+100+y=\left(x-6\right)^{2}+\left(y-4\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+10\right)^{2}.
x^{2}+20x+100+y=x^{2}-12x+36+\left(y-4\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}+20x+100+y=x^{2}-12x+36+y^{2}-8y\sqrt{2}+16\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\sqrt{2}\right)^{2}.
x^{2}+20x+100+y=x^{2}-12x+36+y^{2}-8y\sqrt{2}+16\times 2
The square of \sqrt{2} is 2.
x^{2}+20x+100+y=x^{2}-12x+36+y^{2}-8y\sqrt{2}+32
Multiply 16 and 2 to get 32.
x^{2}+20x+100+y=x^{2}-12x+68+y^{2}-8y\sqrt{2}
Add 36 and 32 to get 68.
x^{2}+20x+100+y-x^{2}=-12x+68+y^{2}-8y\sqrt{2}
Subtract x^{2} from both sides.
20x+100+y=-12x+68+y^{2}-8y\sqrt{2}
Combine x^{2} and -x^{2} to get 0.
20x+100+y+12x=68+y^{2}-8y\sqrt{2}
Add 12x to both sides.
32x+100+y=68+y^{2}-8y\sqrt{2}
Combine 20x and 12x to get 32x.
32x+y=68+y^{2}-8y\sqrt{2}-100
Subtract 100 from both sides.
32x+y=-32+y^{2}-8y\sqrt{2}
Subtract 100 from 68 to get -32.
32x=-32+y^{2}-8y\sqrt{2}-y
Subtract y from both sides.
32x=y^{2}-8\sqrt{2}y-y-32
The equation is in standard form.
\frac{32x}{32}=\frac{y^{2}-8\sqrt{2}y-y-32}{32}
Divide both sides by 32.
x=\frac{y^{2}-8\sqrt{2}y-y-32}{32}
Dividing by 32 undoes the multiplication by 32.
x=\frac{y^{2}}{32}-\frac{\sqrt{2}y}{4}-\frac{y}{32}-1
Divide -32+y^{2}-8y\sqrt{2}-y by 32.