Evaluate
-2x-3
Expand
-2x-3
Graph
Share
Copied to clipboard
x^{2}+2x+1-\left(x+2\right)^{2}+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-\left(x^{2}+4x+4\right)+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+2x+1-x^{2}-4x-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
To find the opposite of x^{2}+4x+4, find the opposite of each term.
2x+1-4x-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Combine x^{2} and -x^{2} to get 0.
-2x+1-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Combine 2x and -4x to get -2x.
-2x-3+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Subtract 4 from 1 to get -3.
-2x-3+\left(x^{2}-1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
-2x-3+\left(x^{2}-1\right)^{2}+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Multiply x^{2}-1 and x^{2}-1 to get \left(x^{2}-1\right)^{2}.
-2x-3+\left(x^{2}\right)^{2}-2x^{2}+1+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
-2x-3+x^{4}-2x^{2}+1+\left(x^{2}-1\right)\left(-x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2x-2+x^{4}-2x^{2}+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Add -3 and 1 to get -2.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+x^{2}-\left(-x^{2}\right)-1
Use the distributive property to multiply x^{2}-1 by -x^{2}+1.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+x^{2}+x^{2}-1
Multiply -1 and -1 to get 1.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+2x^{2}-1
Combine x^{2} and x^{2} to get 2x^{2}.
-2x-2+x^{4}+x^{2}\left(-x^{2}\right)-1
Combine -2x^{2} and 2x^{2} to get 0.
-2x-3+x^{4}+x^{2}\left(-x^{2}\right)
Subtract 1 from -2 to get -3.
-2x-3+x^{4}+x^{4}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-2x-3
Combine x^{4} and x^{4}\left(-1\right) to get 0.
x^{2}+2x+1-\left(x+2\right)^{2}+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1-\left(x^{2}+4x+4\right)+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+2x+1-x^{2}-4x-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
To find the opposite of x^{2}+4x+4, find the opposite of each term.
2x+1-4x-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Combine x^{2} and -x^{2} to get 0.
-2x+1-4+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Combine 2x and -4x to get -2x.
-2x-3+\left(x-1\right)\left(x+1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Subtract 4 from 1 to get -3.
-2x-3+\left(x^{2}-1\right)\left(x^{2}-1\right)+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
-2x-3+\left(x^{2}-1\right)^{2}+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Multiply x^{2}-1 and x^{2}-1 to get \left(x^{2}-1\right)^{2}.
-2x-3+\left(x^{2}\right)^{2}-2x^{2}+1+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-1\right)^{2}.
-2x-3+x^{4}-2x^{2}+1+\left(x^{2}-1\right)\left(-x^{2}+1\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-2x-2+x^{4}-2x^{2}+\left(x^{2}-1\right)\left(-x^{2}+1\right)
Add -3 and 1 to get -2.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+x^{2}-\left(-x^{2}\right)-1
Use the distributive property to multiply x^{2}-1 by -x^{2}+1.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+x^{2}+x^{2}-1
Multiply -1 and -1 to get 1.
-2x-2+x^{4}-2x^{2}+x^{2}\left(-x^{2}\right)+2x^{2}-1
Combine x^{2} and x^{2} to get 2x^{2}.
-2x-2+x^{4}+x^{2}\left(-x^{2}\right)-1
Combine -2x^{2} and 2x^{2} to get 0.
-2x-3+x^{4}+x^{2}\left(-x^{2}\right)
Subtract 1 from -2 to get -3.
-2x-3+x^{4}+x^{4}\left(-1\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-2x-3
Combine x^{4} and x^{4}\left(-1\right) to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}