Solve for x
x=0.2
Graph
Share
Copied to clipboard
x^{2}+2x+1+\left(0.75x-\frac{7}{4}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+0.5625x^{2}-\frac{21}{8}x+\frac{49}{16}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.75x-\frac{7}{4}\right)^{2}.
1.5625x^{2}+2x+1-\frac{21}{8}x+\frac{49}{16}=4
Combine x^{2} and 0.5625x^{2} to get 1.5625x^{2}.
1.5625x^{2}-\frac{5}{8}x+1+\frac{49}{16}=4
Combine 2x and -\frac{21}{8}x to get -\frac{5}{8}x.
1.5625x^{2}-\frac{5}{8}x+\frac{65}{16}=4
Add 1 and \frac{49}{16} to get \frac{65}{16}.
1.5625x^{2}-\frac{5}{8}x+\frac{65}{16}-4=0
Subtract 4 from both sides.
1.5625x^{2}-\frac{5}{8}x+\frac{1}{16}=0
Subtract 4 from \frac{65}{16} to get \frac{1}{16}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times 1.5625\times \frac{1}{16}}}{2\times 1.5625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5625 for a, -\frac{5}{8} for b, and \frac{1}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times 1.5625\times \frac{1}{16}}}{2\times 1.5625}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-6.25\times \frac{1}{16}}}{2\times 1.5625}
Multiply -4 times 1.5625.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25-25}{64}}}{2\times 1.5625}
Multiply -6.25 times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{0}}{2\times 1.5625}
Add \frac{25}{64} to -\frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{-\frac{5}{8}}{2\times 1.5625}
Take the square root of 0.
x=\frac{\frac{5}{8}}{2\times 1.5625}
The opposite of -\frac{5}{8} is \frac{5}{8}.
x=\frac{\frac{5}{8}}{3.125}
Multiply 2 times 1.5625.
x=\frac{1}{5}
Divide \frac{5}{8} by 3.125 by multiplying \frac{5}{8} by the reciprocal of 3.125.
x^{2}+2x+1+\left(0.75x-\frac{7}{4}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+0.5625x^{2}-\frac{21}{8}x+\frac{49}{16}=4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.75x-\frac{7}{4}\right)^{2}.
1.5625x^{2}+2x+1-\frac{21}{8}x+\frac{49}{16}=4
Combine x^{2} and 0.5625x^{2} to get 1.5625x^{2}.
1.5625x^{2}-\frac{5}{8}x+1+\frac{49}{16}=4
Combine 2x and -\frac{21}{8}x to get -\frac{5}{8}x.
1.5625x^{2}-\frac{5}{8}x+\frac{65}{16}=4
Add 1 and \frac{49}{16} to get \frac{65}{16}.
1.5625x^{2}-\frac{5}{8}x=4-\frac{65}{16}
Subtract \frac{65}{16} from both sides.
1.5625x^{2}-\frac{5}{8}x=-\frac{1}{16}
Subtract \frac{65}{16} from 4 to get -\frac{1}{16}.
\frac{1.5625x^{2}-\frac{5}{8}x}{1.5625}=-\frac{\frac{1}{16}}{1.5625}
Divide both sides of the equation by 1.5625, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{5}{8}}{1.5625}\right)x=-\frac{\frac{1}{16}}{1.5625}
Dividing by 1.5625 undoes the multiplication by 1.5625.
x^{2}-\frac{2}{5}x=-\frac{\frac{1}{16}}{1.5625}
Divide -\frac{5}{8} by 1.5625 by multiplying -\frac{5}{8} by the reciprocal of 1.5625.
x^{2}-\frac{2}{5}x=-\frac{1}{25}
Divide -\frac{1}{16} by 1.5625 by multiplying -\frac{1}{16} by the reciprocal of 1.5625.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{1}{25}+\left(-\frac{1}{5}\right)^{2}
Divide -\frac{2}{5}, the coefficient of the x term, by 2 to get -\frac{1}{5}. Then add the square of -\frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{-1+1}{25}
Square -\frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{5}x+\frac{1}{25}=0
Add -\frac{1}{25} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{5}\right)^{2}=0
Factor x^{2}-\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{1}{5}=0 x-\frac{1}{5}=0
Simplify.
x=\frac{1}{5} x=\frac{1}{5}
Add \frac{1}{5} to both sides of the equation.
x=\frac{1}{5}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}