Solve for t
t=4\sqrt{2}+4\approx 9.656854249
t=4-4\sqrt{2}\approx -1.656854249
Share
Copied to clipboard
t^{2}-12t+36+t^{2}+80=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-6\right)^{2}.
2t^{2}-12t+36+80=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Combine t^{2} and t^{2} to get 2t^{2}.
2t^{2}-12t+116=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Add 36 and 80 to get 116.
2t^{2}-12t+116=t^{2}-4t+4+\left(2t-8\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
2t^{2}-12t+116=t^{2}-4t+4+4t^{2}-32t+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2t-8\right)^{2}.
2t^{2}-12t+116=5t^{2}-4t+4-32t+64
Combine t^{2} and 4t^{2} to get 5t^{2}.
2t^{2}-12t+116=5t^{2}-36t+4+64
Combine -4t and -32t to get -36t.
2t^{2}-12t+116=5t^{2}-36t+68
Add 4 and 64 to get 68.
2t^{2}-12t+116-5t^{2}=-36t+68
Subtract 5t^{2} from both sides.
-3t^{2}-12t+116=-36t+68
Combine 2t^{2} and -5t^{2} to get -3t^{2}.
-3t^{2}-12t+116+36t=68
Add 36t to both sides.
-3t^{2}+24t+116=68
Combine -12t and 36t to get 24t.
-3t^{2}+24t+116-68=0
Subtract 68 from both sides.
-3t^{2}+24t+48=0
Subtract 68 from 116 to get 48.
t=\frac{-24±\sqrt{24^{2}-4\left(-3\right)\times 48}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 24 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-24±\sqrt{576-4\left(-3\right)\times 48}}{2\left(-3\right)}
Square 24.
t=\frac{-24±\sqrt{576+12\times 48}}{2\left(-3\right)}
Multiply -4 times -3.
t=\frac{-24±\sqrt{576+576}}{2\left(-3\right)}
Multiply 12 times 48.
t=\frac{-24±\sqrt{1152}}{2\left(-3\right)}
Add 576 to 576.
t=\frac{-24±24\sqrt{2}}{2\left(-3\right)}
Take the square root of 1152.
t=\frac{-24±24\sqrt{2}}{-6}
Multiply 2 times -3.
t=\frac{24\sqrt{2}-24}{-6}
Now solve the equation t=\frac{-24±24\sqrt{2}}{-6} when ± is plus. Add -24 to 24\sqrt{2}.
t=4-4\sqrt{2}
Divide -24+24\sqrt{2} by -6.
t=\frac{-24\sqrt{2}-24}{-6}
Now solve the equation t=\frac{-24±24\sqrt{2}}{-6} when ± is minus. Subtract 24\sqrt{2} from -24.
t=4\sqrt{2}+4
Divide -24-24\sqrt{2} by -6.
t=4-4\sqrt{2} t=4\sqrt{2}+4
The equation is now solved.
t^{2}-12t+36+t^{2}+80=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-6\right)^{2}.
2t^{2}-12t+36+80=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Combine t^{2} and t^{2} to get 2t^{2}.
2t^{2}-12t+116=\left(t-2\right)^{2}+\left(2t-8\right)^{2}
Add 36 and 80 to get 116.
2t^{2}-12t+116=t^{2}-4t+4+\left(2t-8\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-2\right)^{2}.
2t^{2}-12t+116=t^{2}-4t+4+4t^{2}-32t+64
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2t-8\right)^{2}.
2t^{2}-12t+116=5t^{2}-4t+4-32t+64
Combine t^{2} and 4t^{2} to get 5t^{2}.
2t^{2}-12t+116=5t^{2}-36t+4+64
Combine -4t and -32t to get -36t.
2t^{2}-12t+116=5t^{2}-36t+68
Add 4 and 64 to get 68.
2t^{2}-12t+116-5t^{2}=-36t+68
Subtract 5t^{2} from both sides.
-3t^{2}-12t+116=-36t+68
Combine 2t^{2} and -5t^{2} to get -3t^{2}.
-3t^{2}-12t+116+36t=68
Add 36t to both sides.
-3t^{2}+24t+116=68
Combine -12t and 36t to get 24t.
-3t^{2}+24t=68-116
Subtract 116 from both sides.
-3t^{2}+24t=-48
Subtract 116 from 68 to get -48.
\frac{-3t^{2}+24t}{-3}=-\frac{48}{-3}
Divide both sides by -3.
t^{2}+\frac{24}{-3}t=-\frac{48}{-3}
Dividing by -3 undoes the multiplication by -3.
t^{2}-8t=-\frac{48}{-3}
Divide 24 by -3.
t^{2}-8t=16
Divide -48 by -3.
t^{2}-8t+\left(-4\right)^{2}=16+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=16+16
Square -4.
t^{2}-8t+16=32
Add 16 to 16.
\left(t-4\right)^{2}=32
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{32}
Take the square root of both sides of the equation.
t-4=4\sqrt{2} t-4=-4\sqrt{2}
Simplify.
t=4\sqrt{2}+4 t=4-4\sqrt{2}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}