Solve for m
m=\frac{2\sqrt{21}}{3}-2\approx 1.055050463
m=-\frac{2\sqrt{21}}{3}-2\approx -5.055050463
Share
Copied to clipboard
m^{2}-8m+16-4m\left(m+1\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16-4m^{2}-4m=0
Use the distributive property to multiply -4m by m+1.
-3m^{2}-8m+16-4m=0
Combine m^{2} and -4m^{2} to get -3m^{2}.
-3m^{2}-12m+16=0
Combine -8m and -4m to get -12m.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\times 16}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -12 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\times 16}}{2\left(-3\right)}
Square -12.
m=\frac{-\left(-12\right)±\sqrt{144+12\times 16}}{2\left(-3\right)}
Multiply -4 times -3.
m=\frac{-\left(-12\right)±\sqrt{144+192}}{2\left(-3\right)}
Multiply 12 times 16.
m=\frac{-\left(-12\right)±\sqrt{336}}{2\left(-3\right)}
Add 144 to 192.
m=\frac{-\left(-12\right)±4\sqrt{21}}{2\left(-3\right)}
Take the square root of 336.
m=\frac{12±4\sqrt{21}}{2\left(-3\right)}
The opposite of -12 is 12.
m=\frac{12±4\sqrt{21}}{-6}
Multiply 2 times -3.
m=\frac{4\sqrt{21}+12}{-6}
Now solve the equation m=\frac{12±4\sqrt{21}}{-6} when ± is plus. Add 12 to 4\sqrt{21}.
m=-\frac{2\sqrt{21}}{3}-2
Divide 12+4\sqrt{21} by -6.
m=\frac{12-4\sqrt{21}}{-6}
Now solve the equation m=\frac{12±4\sqrt{21}}{-6} when ± is minus. Subtract 4\sqrt{21} from 12.
m=\frac{2\sqrt{21}}{3}-2
Divide 12-4\sqrt{21} by -6.
m=-\frac{2\sqrt{21}}{3}-2 m=\frac{2\sqrt{21}}{3}-2
The equation is now solved.
m^{2}-8m+16-4m\left(m+1\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-4\right)^{2}.
m^{2}-8m+16-4m^{2}-4m=0
Use the distributive property to multiply -4m by m+1.
-3m^{2}-8m+16-4m=0
Combine m^{2} and -4m^{2} to get -3m^{2}.
-3m^{2}-12m+16=0
Combine -8m and -4m to get -12m.
-3m^{2}-12m=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{-3m^{2}-12m}{-3}=-\frac{16}{-3}
Divide both sides by -3.
m^{2}+\left(-\frac{12}{-3}\right)m=-\frac{16}{-3}
Dividing by -3 undoes the multiplication by -3.
m^{2}+4m=-\frac{16}{-3}
Divide -12 by -3.
m^{2}+4m=\frac{16}{3}
Divide -16 by -3.
m^{2}+4m+2^{2}=\frac{16}{3}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+4m+4=\frac{16}{3}+4
Square 2.
m^{2}+4m+4=\frac{28}{3}
Add \frac{16}{3} to 4.
\left(m+2\right)^{2}=\frac{28}{3}
Factor m^{2}+4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+2\right)^{2}}=\sqrt{\frac{28}{3}}
Take the square root of both sides of the equation.
m+2=\frac{2\sqrt{21}}{3} m+2=-\frac{2\sqrt{21}}{3}
Simplify.
m=\frac{2\sqrt{21}}{3}-2 m=-\frac{2\sqrt{21}}{3}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}