Evaluate
8a^{3}
Expand
8a^{3}
Share
Copied to clipboard
a^{3}-3a^{2}b+3ab^{2}-b^{3}+\left(a+b\right)^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a-b\right)^{3}.
a^{3}-3a^{2}b+3ab^{2}-b^{3}+a^{3}+3a^{2}b+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
2a^{3}-3a^{2}b+3ab^{2}-b^{3}+3a^{2}b+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine a^{3} and a^{3} to get 2a^{3}.
2a^{3}+3ab^{2}-b^{3}+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine -3a^{2}b and 3a^{2}b to get 0.
2a^{3}+6ab^{2}-b^{3}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 3ab^{2} and 3ab^{2} to get 6ab^{2}.
2a^{3}+6ab^{2}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine -b^{3} and b^{3} to get 0.
2a^{3}+6ab^{2}+3\left(a+b\right)\left(a^{2}-2ab+b^{2}\right)+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2a^{3}+6ab^{2}+\left(3a+3b\right)\left(a^{2}-2ab+b^{2}\right)+3\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply 3 by a+b.
2a^{3}+6ab^{2}+3a^{3}-3a^{2}b-3ab^{2}+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply 3a+3b by a^{2}-2ab+b^{2} and combine like terms.
5a^{3}+6ab^{2}-3a^{2}b-3ab^{2}+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 2a^{3} and 3a^{3} to get 5a^{3}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 6ab^{2} and -3ab^{2} to get 3ab^{2}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+\left(3a-3b\right)\left(a^{2}+2ab+b^{2}\right)
Use the distributive property to multiply 3 by a-b.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3a^{3}+3a^{2}b-3ab^{2}-3b^{3}
Use the distributive property to multiply 3a-3b by a^{2}+2ab+b^{2} and combine like terms.
8a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3a^{2}b-3ab^{2}-3b^{3}
Combine 5a^{3} and 3a^{3} to get 8a^{3}.
8a^{3}+3ab^{2}+3b^{3}-3ab^{2}-3b^{3}
Combine -3a^{2}b and 3a^{2}b to get 0.
8a^{3}+3b^{3}-3b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
8a^{3}
Combine 3b^{3} and -3b^{3} to get 0.
a^{3}-3a^{2}b+3ab^{2}-b^{3}+\left(a+b\right)^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a-b\right)^{3}.
a^{3}-3a^{2}b+3ab^{2}-b^{3}+a^{3}+3a^{2}b+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} to expand \left(a+b\right)^{3}.
2a^{3}-3a^{2}b+3ab^{2}-b^{3}+3a^{2}b+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine a^{3} and a^{3} to get 2a^{3}.
2a^{3}+3ab^{2}-b^{3}+3ab^{2}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine -3a^{2}b and 3a^{2}b to get 0.
2a^{3}+6ab^{2}-b^{3}+b^{3}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 3ab^{2} and 3ab^{2} to get 6ab^{2}.
2a^{3}+6ab^{2}+3\left(a+b\right)\left(a-b\right)^{2}+3\left(a-b\right)\left(a+b\right)^{2}
Combine -b^{3} and b^{3} to get 0.
2a^{3}+6ab^{2}+3\left(a+b\right)\left(a^{2}-2ab+b^{2}\right)+3\left(a-b\right)\left(a+b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-b\right)^{2}.
2a^{3}+6ab^{2}+\left(3a+3b\right)\left(a^{2}-2ab+b^{2}\right)+3\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply 3 by a+b.
2a^{3}+6ab^{2}+3a^{3}-3a^{2}b-3ab^{2}+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Use the distributive property to multiply 3a+3b by a^{2}-2ab+b^{2} and combine like terms.
5a^{3}+6ab^{2}-3a^{2}b-3ab^{2}+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 2a^{3} and 3a^{3} to get 5a^{3}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3\left(a-b\right)\left(a+b\right)^{2}
Combine 6ab^{2} and -3ab^{2} to get 3ab^{2}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3\left(a-b\right)\left(a^{2}+2ab+b^{2}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+\left(3a-3b\right)\left(a^{2}+2ab+b^{2}\right)
Use the distributive property to multiply 3 by a-b.
5a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3a^{3}+3a^{2}b-3ab^{2}-3b^{3}
Use the distributive property to multiply 3a-3b by a^{2}+2ab+b^{2} and combine like terms.
8a^{3}+3ab^{2}-3a^{2}b+3b^{3}+3a^{2}b-3ab^{2}-3b^{3}
Combine 5a^{3} and 3a^{3} to get 8a^{3}.
8a^{3}+3ab^{2}+3b^{3}-3ab^{2}-3b^{3}
Combine -3a^{2}b and 3a^{2}b to get 0.
8a^{3}+3b^{3}-3b^{3}
Combine 3ab^{2} and -3ab^{2} to get 0.
8a^{3}
Combine 3b^{3} and -3b^{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}