Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(a+b\right)^{2}=\left(a+b\right)^{2}
Multiply a+b and a+b to get \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Subtract a^{2} from both sides.
2ab+b^{2}=2ab+b^{2}
Combine a^{2} and -a^{2} to get 0.
2ab+b^{2}-2ab=b^{2}
Subtract 2ab from both sides.
b^{2}=b^{2}
Combine 2ab and -2ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Multiply a+b and a+b to get \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}=a^{2}+b^{2}
Combine 2ab and -2ab to get 0.
a^{2}+b^{2}-b^{2}=a^{2}
Subtract b^{2} from both sides.
a^{2}=a^{2}
Combine b^{2} and -b^{2} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Multiply a+b and a+b to get \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-a^{2}=2ab+b^{2}
Subtract a^{2} from both sides.
2ab+b^{2}=2ab+b^{2}
Combine a^{2} and -a^{2} to get 0.
2ab+b^{2}-2ab=b^{2}
Subtract 2ab from both sides.
b^{2}=b^{2}
Combine 2ab and -2ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
\left(a+b\right)^{2}=\left(a+b\right)^{2}
Multiply a+b and a+b to get \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=\left(a+b\right)^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}=a^{2}+2ab+b^{2}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+b\right)^{2}.
a^{2}+2ab+b^{2}-2ab=a^{2}+b^{2}
Subtract 2ab from both sides.
a^{2}+b^{2}=a^{2}+b^{2}
Combine 2ab and -2ab to get 0.
a^{2}+b^{2}-b^{2}=a^{2}
Subtract b^{2} from both sides.
a^{2}=a^{2}
Combine b^{2} and -b^{2} to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.