Solve for a
a=2\sqrt{6}+6\approx 10.898979486
a=6-2\sqrt{6}\approx 1.101020514
Share
Copied to clipboard
a^{2}+4a+4=\left(4-a\right)^{2}+a^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{2}+4a+4=16-8a+a^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
a^{2}+4a+4=16-8a+2a^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
a^{2}+4a+4-16=-8a+2a^{2}
Subtract 16 from both sides.
a^{2}+4a-12=-8a+2a^{2}
Subtract 16 from 4 to get -12.
a^{2}+4a-12+8a=2a^{2}
Add 8a to both sides.
a^{2}+12a-12=2a^{2}
Combine 4a and 8a to get 12a.
a^{2}+12a-12-2a^{2}=0
Subtract 2a^{2} from both sides.
-a^{2}+12a-12=0
Combine a^{2} and -2a^{2} to get -a^{2}.
a=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-12±\sqrt{144-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Square 12.
a=\frac{-12±\sqrt{144+4\left(-12\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-12±\sqrt{144-48}}{2\left(-1\right)}
Multiply 4 times -12.
a=\frac{-12±\sqrt{96}}{2\left(-1\right)}
Add 144 to -48.
a=\frac{-12±4\sqrt{6}}{2\left(-1\right)}
Take the square root of 96.
a=\frac{-12±4\sqrt{6}}{-2}
Multiply 2 times -1.
a=\frac{4\sqrt{6}-12}{-2}
Now solve the equation a=\frac{-12±4\sqrt{6}}{-2} when ± is plus. Add -12 to 4\sqrt{6}.
a=6-2\sqrt{6}
Divide -12+4\sqrt{6} by -2.
a=\frac{-4\sqrt{6}-12}{-2}
Now solve the equation a=\frac{-12±4\sqrt{6}}{-2} when ± is minus. Subtract 4\sqrt{6} from -12.
a=2\sqrt{6}+6
Divide -12-4\sqrt{6} by -2.
a=6-2\sqrt{6} a=2\sqrt{6}+6
The equation is now solved.
a^{2}+4a+4=\left(4-a\right)^{2}+a^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{2}+4a+4=16-8a+a^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
a^{2}+4a+4=16-8a+2a^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
a^{2}+4a+4+8a=16+2a^{2}
Add 8a to both sides.
a^{2}+12a+4=16+2a^{2}
Combine 4a and 8a to get 12a.
a^{2}+12a+4-2a^{2}=16
Subtract 2a^{2} from both sides.
-a^{2}+12a+4=16
Combine a^{2} and -2a^{2} to get -a^{2}.
-a^{2}+12a=16-4
Subtract 4 from both sides.
-a^{2}+12a=12
Subtract 4 from 16 to get 12.
\frac{-a^{2}+12a}{-1}=\frac{12}{-1}
Divide both sides by -1.
a^{2}+\frac{12}{-1}a=\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-12a=\frac{12}{-1}
Divide 12 by -1.
a^{2}-12a=-12
Divide 12 by -1.
a^{2}-12a+\left(-6\right)^{2}=-12+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-12a+36=-12+36
Square -6.
a^{2}-12a+36=24
Add -12 to 36.
\left(a-6\right)^{2}=24
Factor a^{2}-12a+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-6\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
a-6=2\sqrt{6} a-6=-2\sqrt{6}
Simplify.
a=2\sqrt{6}+6 a=6-2\sqrt{6}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}